版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届重庆市涪陵中学高二上数学期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,若,则()A.6 B.11C.12 D.222.已知两个向量,,且,则的值为()A.-2 B.2C.10 D.-103.在等差数列中,若,则()A.6 B.9C.11 D.244.“,”是“方程表示双曲线”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.“且”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.若圆与圆外切,则()A. B.C. D.7.在正方体中,E,F分别为AB,CD的中点,则与平面所成的角的正弦值为()A. B.C. D.8.已知直线和互相平行,则实数()A. B.C.或 D.或9.中国古代数学名著九章算术中有这样一个问题:今有牛、马、羊食人苗,苗主责之栗五斗羊主曰:“我羊食半马”马主曰:“我马食半牛”今欲哀偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗的主人要求赔偿5斗栗羊主人说:“我羊所吃的禾苗只有马的一半”马主人说:“我马所吃的禾苗只有牛的一半”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还栗a升,b升,c升,1斗为10升,则下列判断正确的是A.a,b,c依次成公比为2的等比数列,且B.a,b,c依次成公比为2的等比数列,且C.a,b,c依次成公比为的等比数列,且D.a,b,c依次成公比为的等比数列,且10.已知等比数列的公比q为整数,且,,则()A.2 B.3C.-2 D.-311.如图,在三棱锥中,是线段的中点,则()A. B.C. D.12.设等差数列的前项和为,已知,,则的公差为()A.2 B.3C.4 D.5二、填空题:本题共4小题,每小题5分,共20分。13.写出直线一个方向向量______14.已知数列满足0,,则数列的通项公式为____,则数列的前项和______15.抛物线的准线方程是___________.16.已知等差数列的前项和为,若,,则数列的前2021项和为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题p:直线与双曲线的右支有两个不同的交点,命题q:直线与直线平行.(1)若,判断命题“”的真假;(2)若命题“”为真命题,求实数k的取值范围.18.(12分)如图,在直三棱柱中,,E、F分别是、的中点(1)求证:平面;(2)求证:平面19.(12分)如图,在三棱锥中,,,为的中点.(1)求证:平面;(2)若点在棱上,且,求点到平面的距离.20.(12分)已知抛物线C的对称轴是y轴,点在曲线C上.(1)求抛物线的标准方程;(2)过抛物线焦点的倾斜角为直线l与抛物线交于A、B两点,求线段AB的长度.21.(12分)已知椭圆长轴长为4,A,B分别为左、右顶点,P为椭圆上不同于A,B的动点,且点在椭圆上,其中e为椭圆的离心率(1)求椭圆的标准方程;(2)直线AP与直线(m为常数)交于点Q,①当时,设直线OQ的斜率为,直线BP的斜率为.求证:为定值;②过Q与PB垂直的直线l是否过定点?如果是,请求出定点坐标;如果不是,请说明理由22.(10分)已知椭圆的离心率为,椭圆的上顶点到焦点的距离为.(1)求椭圆的方程;(2)若直线与椭圆相交于、两点(、不是左、右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据递推关系式计算即可求出结果.【详解】因为,,,则,,,故选:C.2、C【解析】根据向量共线可得满足的关系,从而可求它们的值,据此可得正确的选项.【详解】因为,故存在常数,使得,所以,故,所以,故选:C.3、B【解析】根据等差数列的通项公式的基本量运算求解【详解】设的公差为d,因为,所以,又,所以故选:B4、A【解析】根据双曲线的方程以及充分条件和必要条件的定义进行判断即可【详解】由,可知方程表示焦点在轴上的双曲线;反之,若表示双曲线,则,即,或,所以“,”是“方程表示双曲线”的充分不必要条件故选:A5、A【解析】按照充分必要条件的判断方法判断,“且”能否推出“”,以及“”能否推出“且”,判断得到正确答案,【详解】当且时,成立,反过来,当时,例:,不能推出且.所以“且”是“”的充分不必要条件.故选:A【点睛】本题考查充分不必要条件的判断,重点考查基本判断方法,属于基础题型.6、C【解析】求得两圆的圆心坐标和半径,结合两圆相外切,列出方程,即可求解.【详解】由题意,圆与圆可得,,因为两圆相外切,可得,解得故选:C.7、B【解析】作出线面角构造三角形直接求解,建立空间直角坐标系用向量法求解.【详解】设正方体棱长为2,、F分别为AB、CD的中点,由正方体性质知平面,所以平面平面,在平面作,则平面,因为,所以即为所求角,所以.故选:B8、C【解析】根据题意,结合两直线的平行,得到且,即可求解.【详解】由题意,直线和互相平行,可得且,即且,解得或.故选:C.9、D【解析】由条件知,,依次成公比为的等比数列,三者之和为50升,根据等比数列的前n项和,即故答案为D.10、A【解析】由等比数列的性质有,结合已知求出基本量,再由即可得答案.【详解】因为,,且q为整数,所以,,即q=2.所以.故选:A11、A【解析】根据给定几何体利用空间向量基底结合向量运算计算作答.【详解】在三棱锥中,是线段的中点,所以:.故选:A12、B【解析】由以及等差数列的性质,可得的值,再结合即可求出公差.【详解】解:,得,,又,两式相减得,则.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】本题可先将直线的一般式化为斜截式,然后根据斜率即可得到直线的一个方向向量.【详解】由题意可知,直线可以化为,所以直线的斜率为,直线的一个方向向量可以写为.故答案为:.14、①.②.【解析】第一空:先构造等比数列求出,即可求出的通项公式;第二空:先求出,令,通过错位相减求出的前项和为,再结合等差数列的求和公式及分组求和即可求解.【详解】第一空:由可得,又,则是以1为首项,2为公比的等比数列,则,则;第二空:,设,前项和为,则,,两式相减得,则,又,则.故答案为:;.15、【解析】先根据抛物线方程求出,进而求出准线方程.【详解】抛物线为,则,解得:,准线方程为:.故答案为:16、【解析】根据题意求出,代入中,再利用裂项相消即可求出答案.【详解】由是等差数列且,可知:,故.,数列的前2021项和为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)命题“”为真命题(2)【解析】(1)先判断命题p,命题q的真假,再利用复合命题的真假判断;(2)根据命题“”真命题,由p为真命题,q为假命题求解.【小问1详解】解:对于命题p,易知直线与双曲线的左、右支各有一个交点,∴命题p为假命题;对于命题q,时,有与,显然两条直线垂直,∴命题q为假命题.∴命题“”为真命题.【小问2详解】∵命题“”为真命题,∴p为真命题,q为假命题.对于命题p,由得,直线与双曲线的右支有两个不同的交点,即此方程有两个不同的正根,∴得.对于命题q,要使命题q为真,则,解得,∴命题q为假命题,即.∴实数k的取值范围为.18、(1)证明见解析;(2)证明见解析.【解析】(1)连接,交于点M,连接ME,则M为中点.根据三角形的中位线定理和平行四边形的判断和性质可证得,再由线面平行的判定定理可得证;(2)由线面垂直的性质和判定可得证.【详解】证明:(1)连接,交于点M,连接ME,则M为中点因为E、F分别是与的中点,所以,则,从而为平行四边形,则又因为平面平面,所以平面(2)由平面,因为平面,所以而,M为的中点,所以因为,所以平面,由(1)有,故平面19、(1)证明见解析;(2)【解析】(1)易得,再由勾股定理逆定理证明,即可得线面垂直;(2)根据(1)得,进而根据几何关系,利用等体积法求解即可.【详解】解:(1)连接,∵,是中点,∴,,又,,∴,∴,∵,∴,∴,,平面,∴平面;(2)∵点在棱上,且,,为的中点.∴,∴由余弦定理得,即,∴,由(1)平面,设点到平面的距离为∴,即,解得:所以点到平面的距离为.20、(1)(2)16【解析】(1)设抛物线的标准方程为:,再代入求解即可.(2)根据焦点弦公式求解即可.【小问1详解】由题意知抛物线C的对称轴是y轴,点在曲线C上,所以抛物线开口向上,设抛物线的标准方程为:,代入点的坐标得:,解得则抛物线的标准方程为:.【小问2详解】焦点,则直线的方程是,设,,由得,,所以,则,故.21、(1)(2)①证明见解析;②直线过定点;【解析】(1)依题意得到方程组,解得,即可求出椭圆方程;(2)①由(1)可得,,设,,表示出直线的方程,即可求出点坐标,从而得到、,即可求出;②在直线方程中令,即可得到的坐标,再求出直线的斜率,即可得到直线的方程,从而求出定点坐标;【小问1详解】解:依题意可得,即,解得或(舍去),所以,所以椭圆方程为【小问2详解】解:①由(1)可得,,设,,则直线的方程为,令则,所以,,所以,又点在椭圆上,所以,即,所以,即为定值;②因为直线的方程为,令则,因为,所以,所以直线的方程为,即又,所以,令,解得,所以直线过定点;22、(1);(2)证明见解析.【解析】(1)根据已知条件求出、、的值,可得出椭圆的标准方程;(2)设、,将直线的方程与椭圆的方程联立,列出韦达定理,由已知可得出,利用平面向量数量积的坐标运算结合韦达定理可得出关于、所满足的等式,然后化简直线的方程,即可求得直线所过定点的坐标.【小问1详解】解:椭圆上顶点到焦点距离,又椭圆离心率为,故,,因此,椭圆方程为.【小问2详解】解:设、,由题意可知且,椭圆的右顶点为,则,,因为以为直径的圆过椭圆的右顶点,所以有,则,即,联立,,即,①由韦达定理得,,所以,,化简得,即或,均满足①
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026广西桂林市政法机关招聘辅警3名备考题库及参考答案详解1套
- 1.3《比热容》教案 教科九年级物理上学期
- 2026江苏无锡市教育局直属学校招聘教师154人备考题库(一)及答案详解一套
- 2026天津市武清区“一区五园”面向社会招聘国企工作人员24人备考题库及答案详解参考
- 2026广西柳州市融安县公安局招聘警务辅助人员50人备考题库及答案详解1套
- 2026广东深圳市龙岗区半导体与集成电路生态促进中心选调事业单位工作人员4人备考题库及参考答案详解1套
- 2026江苏扬州市江都区数据局招聘编制外工作人员2人备考题库及答案详解一套
- 2026上半年贵州事业单位联考生态环境厅招聘13人备考题库及参考答案详解一套
- 2026云南辰信人力资源管理咨询有限公司就业见习岗位招募3人备考题库及答案详解(夺冠系列)
- 2026内蒙古赤峰市敖汉旗就业服务中心招聘第一批公益性岗位人员166人备考题库及完整答案详解一套
- 2024年国家电网招聘之电工类考试题库(突破训练)
- 中建公司建筑机电设备安装工程标准化施工手册
- 心脏科医生在心血管疾病治疗及介入手术方面的总结
- 建设单位项目安全生产方案(2篇)
- 畜牧业动物疫病防控手册
- 年度采购合同框架协议
- JT-T-325-2018营运客运类型划分及等级评定
- 地球物理勘探与军事勘察技术研究
- DL-T5440-2020重覆冰架空输电线路设计技术规程
- 2069-3-3101-002WKB产品判定准则-外发
- 商场商户安全培训
评论
0/150
提交评论