贵州省黔西县2026届高一数学第一学期期末预测试题含解析_第1页
贵州省黔西县2026届高一数学第一学期期末预测试题含解析_第2页
贵州省黔西县2026届高一数学第一学期期末预测试题含解析_第3页
贵州省黔西县2026届高一数学第一学期期末预测试题含解析_第4页
贵州省黔西县2026届高一数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省黔西县2026届高一数学第一学期期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则()A. B.C. D.2.()A B.C. D.3.设;,则p是q()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.“密位制”是用于航海方面的一种度量角的方法,我国采用的“密位制”是密位制,即将一个圆周角分为等份,每一个等份是一个密位,那么密位对应弧度为()A. B.C. D.5.如图,在中,为线段上的一点,且,则A. B.C. D.6.已知,若,则x的取值范围为()A. B.C. D.7.已知偶函数f(x)在区间单调递增,则满足的x取值范围是()A. B.C. D.8.一半径为2m的水轮,水轮圆心O距离水面1m;已知水轮按逆时针做匀速转动,每3秒转一圈,且当水轮上点P从水中浮现时(图中点)开始计算时间.如图所示,建立直角坐标系,将点P距离水面的高度h(单位:m)表示为时间t(单位:s)的函数,记,则()A.0 B.1C.3 D.49.已知,,则下列不等式正确的是()A. B.C. D.10.已知函数表示为设,的值域为,则()A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形半径为8,弧长为12,则中心角为__________弧度,扇形面积是________12.若是定义在R上的奇函数,当时,(为常数),则当时,_________.13.函数的部分图象如图所示,则___________.14.已知函数,则__________.15.设函数,若函数满足对,都有,则实数的取值范围是_______.16.已知扇形的弧长为6,圆心角弧度数为2,则其面积为______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的最大值,并写出取得最大值时自变量的集合;(2)把曲线向左平移个单位长度,然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,求在上的单调递增区间.18.已知函数(1)若是定义在上的偶函数,求实数的值;(2)在(1)条件下,若,求函数的零点19.对于函数f(x),若在定义域内存在实数x0,满足f(-x0)=-f(x(1)已知函数f(x)=sin(x+π3)(2)设f(x)=2x+m是定义在[-1,1]上的“M(3)若f(x)=log2(x220.已知,且(1)求的值;(2)求的值.21.已知向量,不共线,,(1)若,求k的值,并判断,是否同向;(2)若,与夹角为,当为何值时,

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用中间量隔开三个值即可.【详解】∵,∴,又,∴,故选:A【点睛】本题考查实数大小的比较,考查指对函数的性质,属于常考题型.2、A【解析】由根据诱导公式可得答案.【详解】故选:A3、A【解析】根据特殊角的三角函数值以及充分条件与必要条件的定义可得结果.【详解】当时,显然成立,即若则成立;当时,,即若则不成立;综上得p是q充分不必要条件,故选:A.4、B【解析】根据弧度制公式即可求得结果【详解】密位对应弧度为故选:B5、D【解析】根据得到,根据题中条件,即可得出结果.【详解】由已知得,所以,又,所以,故选D.【点睛】本题主要考查平面向量基本定理的应用,熟记平面向量基本定理即可,属于常考题型.6、C【解析】首先判断函数的单调性和定义域,再解抽象不等式.【详解】函数的定义域需满足,解得:,并且在区间上,函数单调递增,且,所以,即,解得:或.故选:C【点睛】关键点点睛:本题的关键是判断函数的单调性和定义域,尤其是容易忽略函数的定义域.7、A【解析】由偶函数性质得函数在上的单调性,然后由单调性解不等式【详解】因为偶函数在区间上单调递增,所以在区间上单调递减,故越靠近轴,函数值越小,因为,所以,解得:.故选:A8、C【解析】根据题意设h=f(t)=Asin(ωt+φ)+k,求出φ、A、T和k、ω的值,写出函数解析式,计算f(t)+f(t+1)+f(t+2)的值【详解】根据题意,设h=f(t)=Asin(ωt+φ)+k,(φ<0),则A=2,k=1,因为T=3,所以ω,所以h=2sin(t+φ)+1,又因为t=0时,h=0,所以0=2sinφ+1,所以sinφ,又因为φ<0,所以φ,所以h=f(t)=2sin(t)+1;所以f(t)sint﹣cost+1,f(t+1)=2sin(t)+1=2cost+1,f(t+2)=2sin(t)+1sint﹣cost+1,所以f(t)+f(t+1)+f(t+2)=3故选:C9、C【解析】利用指数函数、对数函数的单调性即可求解.【详解】由为单调递减函数,则,为单调递减函数,则,为单调递增函数,则故.故选:C【点睛】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题.10、A【解析】根据所给函数可得答案.【详解】根据题意得,的值域为.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】详解】试题分析:根据弧长公式得,扇形面积考点:弧度制下弧长公式、扇形面积公式的应用12、【解析】根据得到,再取时,,根据函数奇偶性得到表达式.【详解】是定义在R上的奇函数,则,故,时,,则.故答案为:.13、##【解析】函数的图象与性质,求出、与的值,再利用函数的周期性即可求出答案.【详解】解:由图象知,,∴,又由图象可得:,可求得,∴,∴,∴故答案为:.14、2【解析】先求出,然后再求的值.【详解】由题意可得,所以,故答案为:15、【解析】首先根据题意可得出函数在上单调递增;然后根据分段函数单调性的判断方法,同时结合二次函数的单调性即可求出答案.【详解】因为函数满足对,都有,所以函数在上单调递增.当时,,此时满足在上单调递增,且;当时,,其对称轴为,当时,上单调递增,所以要满足题意,需,即;当时,在上单调递增,所以要满足题意,需,即;当时,单调递增,且满足,所以满足题意.综上知,实数的取值范围是.故答案为:.16、9【解析】根据扇形的弧长是6,圆心角为2,先求得半径,再代入公式求解.【详解】因为扇形的弧长是6,圆心角为2,所以,所以扇形的面积为,故答案为:9.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)的最大值,(2)【解析】(1)根据的范围可得的范围,可得的最大值及取得最大值时自变量的集合;(2)由图象平移规律可得,结合的范围和正弦曲线的单调性可得答案.【小问1详解】因为,所以,所以,当即时的最大值,所以取得最大值时自变量的集合是.【小问2详解】因为把曲线向左平移个单位长度,然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,所以.因为,所以.因为正弦曲线在上的单调递增区间是,所以,所以.所以在上的单调递增区间是.18、(1);(2)有两个零点,分别为和【解析】(1)由函数为偶函数得即可求实数的值;(2),计算令,则即可.试题解析:(1)解:∵是定义在上的偶函数.∴,即故.经检验满足题意(2)依题意.则由,得,令,则解得.即.∴函数有两个零点,分别为和.19、(1)函数f(x)=sin(x+π3)是“M【解析】(1)由f(-x)=-f(x),得sin(-x+π3)=-(2)由题存在实数x0∈[-1,1]满足f(-x0)=-f(x0),即方程2xm取最小值-(3)由题即存在实数x0,满足f(-x0)=-f(x0)试题解析:(1)由f(-x)=-f(x),得:sin所以3所以存在x0=所以函数f(x)=sin(x+π(2)因为f(x)=2x+m是定义在[-1,1]所以存在实数x0∈[-1,1]满足即方程2x+2令t=则m=-12(t+1t),因为所以当t=12或t=2时,m(3)由x2-2mx>0对x≥2因为若f(x)=log2(所以存在实数x0,满足①当x0≥2时,-x0因为函数y=12x-4②当-2<x0<2时,-2<-③当x0≤-2时,-x0因为函数y=-12综上所述,实数m的取值范围是[-1,1)点睛:已知方程有根问题可转化为函数有零点问题,求参数常用的方法和思路有:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成函数的值域问题解决;(3)数形结合法:先对解析式变形,在同一个平面直角坐标系中,画出函数图像,然后数形结合求解.20、(1)7(2)【解析】(1)根据题意求得,然后利用两角和的正切公式即可得出答案;(2)利用诱导公式及二倍角的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论