八年级数学(上)·二次根式的混合运算与综合应用-基于运算能力与模型意识培养的教学设计_第1页
八年级数学(上)·二次根式的混合运算与综合应用-基于运算能力与模型意识培养的教学设计_第2页
八年级数学(上)·二次根式的混合运算与综合应用-基于运算能力与模型意识培养的教学设计_第3页
八年级数学(上)·二次根式的混合运算与综合应用-基于运算能力与模型意识培养的教学设计_第4页
八年级数学(上)·二次根式的混合运算与综合应用-基于运算能力与模型意识培养的教学设计_第5页
已阅读5页,还剩55页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

八年级数学(上)·二次根式的混合运算与综合应用——基于运算能力与模型意识培养的教学设计一、教学内容分析

本节课选自北师大版《数学》八年级上册第二章“实数”中“二次根式”单元的第三课时。从《义务教育数学课程标准(2022年版)》审视,本课处于“数与代数”领域的“数与式”主题脉络中。在知识技能图谱上,它上承二次根式的乘除法则与最简形式,下启实数运算体系的完整建构与后续代数式的复杂变形,是学生从单一运算规则走向综合运算能力的关键枢纽。其认知要求已从“理解”“掌握”具体法则,跃升至在复杂情境中“运用”法则解决问题,强调运算的准确性、灵活性与策略性。在过程方法层面,课标倡导的“模型观念”与“运算能力”在此交汇。本节课通过设计解决实际问题的任务,引导学生经历“从实际情境中抽象出数学问题—运用二次根式运算建立数学模型—求解并解释”的完整过程,这正是数学建模思想的微型化实践。在素养价值渗透上,二次根式作为实数家族的重要成员,其运算的严谨性有助于培养学生理性求真的科学精神;而综合应用中所涉及的优化、估算等问题,则能引导学生体会数学的工具价值,发展其有条理、重逻辑的思维品质。

立足“以学定教”原则,需进行立体学情研判。学生已有的基础是:掌握了二次根式的概念、性质及乘除运算的基本法则,具备了初步的代数式变形能力和有理数混合运算的经验。潜在的认知障碍在于:第一,面对包含加、减、乘、除、乘方、括号等多种运算的混合式子时,容易混淆运算顺序或遗忘法则的适用条件;第二,在化简与运算的交织过程中,对“先化简后运算”或“边运算边化简”的策略选择感到困惑;第三,将运算技能应用于实际问题时,从文字语言到数学符号语言的转化仍是难点。因此,教学调适策略应着眼于搭建“脚手架”:通过设计由浅入深、从程序性到策略性的任务链,辅以清晰的操作步骤提示卡(脚手架),帮助学生厘清运算逻辑。同时,预设贯穿课堂的形成性评价,如观察学生板演步骤、聆听小组讨论中的典型错误、分析随堂练习的即时反馈,以便动态捕捉学情,对普遍性难点进行定点突破,并对理解较快的学生提供更具挑战性的变式问题。二、教学目标

知识目标:学生能准确叙述二次根式混合运算的顺序,理解并能在具体算式中识别运算的层级;能在包含加、减、乘、除及乘方的混合算式中,正确、熟练地综合运用二次根式的性质和运算法则进行化简与计算,最终将结果化为最简二次根式或整式。

能力目标:学生能够从简单的实际问题(如几何图形中的长度、面积计算)中抽象出二次根式的运算式,并予以求解,初步体验数学建模的过程;在运算过程中,能根据式子的结构特征,灵活选择“先化简后运算”或“运用乘法公式”等优化策略,发展运算的策略性思维和简捷求解能力。

情感态度与价值观目标:在解决与实际生活或几何图形相关的问题过程中,感受数学的应用价值,增强学习兴趣;在小组合作探究与交流中,敢于发表自己的见解,也能认真倾听、理性辨析同伴的思路,体验合作学习的效能感与严谨求实的数学态度之重要性。

科学(学科)思维目标:重点发展学生的“模型意识”与“有序思维”。通过将实际问题转化为二次根式运算模型的任务,强化从具体到抽象的建模思维;通过严格遵循运算顺序和步步有据的推理,培养思维的条理性和逻辑性,克服运算中的随意性。

评价与元认知目标:引导学生建立“运算自查清单”(如:运算顺序对吗?每一步运用了哪个法则?结果是最简形式吗?),学会在完成运算后进行自主检验与反思;鼓励学生在解决综合应用问题时,尝试评价不同解法的优劣,初步形成策略优化的元认知意识。三、教学重点与难点

教学重点:二次根式混合运算的顺序与综合运算法则的正确应用。确立依据源于课标对“运算能力”的核心要求,以及本单元知识的结构性地位:混合运算是二次根式四则运算知识的综合集成与高阶应用,是检验学生是否真正构建起二次根式运算认知网络的关键节点,也是后续学习函数、解直角三角形等内容时处理代数式的重要基础。从中考视角看,二次根式的混合运算常作为基础计算题或复杂代数题中的一环出现,其准确性是基本要求。

教学难点:一是根据算式的具体特征灵活选择合理的运算策略进行简化计算;二是将实际问题准确转化为二次根式运算模型。难点成因在于,策略选择需要学生对运算律、乘法公式及二次根式性质有融会贯通的理解,并具备一定的观察力和分析力,这对八年级学生的思维灵活性提出了挑战。实际问题的转化则涉及数学阅读、信息提取与数学建模能力,学生容易因对情境理解偏差或等量关系寻找困难而受阻。预设突破方向是通过典型例题的对比剖析,暴露思维过程,归纳策略选择的原则;并通过搭建“问题拆解”脚手架,引导学生分步完成从“实际问题”到“数学表达式”的转化。四、教学准备清单1.教师准备

1.1媒体与教具:交互式多媒体课件(内含问题情境动画、分层例题与练习、课堂小结思维导图框架);几何图形模具(用于展示面积、周长问题)。

1.2文本与工具:设计并打印《分层学习任务单》(含“基础闯关”“能力攀升”“挑战自我”三个梯度);准备课堂板书的思维导图主框架。2.学生准备

复习二次根式的乘除运算法则及最简二次根式的概念;每人准备课堂练习本、草稿纸。3.环境预设

学生按4人异质小组就座,便于开展合作讨论与互评。五、教学过程第一、导入环节

1.情境创设:同学们,想象一下,我们正在为一间长方形的“数学工作室”设计地面铺装方案。已知工作室的长为(32+6)(3\sqrt{2}+\sqrt{6})(32<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​+6<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​)米,宽为(22−6)(2\sqrt{2}\sqrt{6})(22<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​−6<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​)米。我们不仅要计算铺设地面所需的总面积,还想在四周贴上踢脚线,需要计算周长。看看这间神奇的“数学工作室”,你能发现哪些我们学过的“老朋友”?对,它的边长是用我们刚学的二次根式表示的。那么,它的面积和周长该如何表示和计算呢?

1.1问题提出:面对这样既有加法又有乘法,还有括号的复杂二次根式表达式,我们该如何进行运算?运算的顺序又该如何确定?这就是我们今天要攻克的核心问题:二次根式的混合运算与综合应用。

1.2路径明晰:这节课,我们将像一位熟练的工程师,首先回顾并确认我们的“运算工具箱”里有哪些工具(法则),然后学习如何按照正确的“施工顺序”(运算顺序)来使用它们。我们会从简单的算式组合开始练手,逐步升级到解决像“工作室装修”这样的实际问题。最后,大家还要学会评估哪种运算路径更快捷。准备好了吗?让我们开始今天的探索之旅。第二、新授环节任务一:回顾“工具箱”——运算规则再确认

教师活动:首先,我会通过课件快速呈现一组基础问题:“计算12×3\sqrt{12}\times\sqrt{3}12<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​×3<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​”、“计算62÷226\sqrt{2}\div2\sqrt{2}62<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​÷22<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​”、“将18\sqrt{18}18<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​化为最简二次根式”。不急于让学生计算,而是提问:“看到这些题目,你脑海中首先调用的‘工具’是什么?能说出它的名字和使用注意吗?”通过追问,引导学生不仅说出法则内容,更强调每一步的依据。例如,在学生回答乘法法则后,我会追问:“这里被开方数12和3相乘得36,36开方得6,这个过程本质上运用了我们学过的哪个运算性质?”从而将学生的注意力引向a⋅b=ab\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}a<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​⋅b<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​=ab<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​(a≥0,b≥0)(a\geq0,b\geq0)(a≥0,b≥0)这一核心性质。同时,我会在黑板的“工具箱”区域板书:工具1:乘除法法则(依据:性质);工具2:化简原则(化为最简)。

学生活动:学生快速口答或心算基础问题,并大声说出所运用的法则名称及注意事项。在教师追问下,思考并回答法则背后的数学原理(二次根式的性质)。他们会意识到,熟练、准确地调用这些基础工具是进行复杂混合运算的前提。

即时评价标准:1.准确性:能否快速、正确地得出基础题目的答案。2.表述清晰度:能否用规范的数学语言描述运算法则,而非仅仅给出结果。3.原理关联:能否在教师提示下,将法则与更基本的二次根式性质联系起来。

形成知识、思维、方法清单:★核心工具包:进行二次根式运算,必须熟练掌握两个核心工具:乘法法则a⋅b=ab\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}a<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​⋅b<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​=ab<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​(a≥0,b≥0)(a\geq0,b\geq0)(a≥0,b≥0)与除法法则ab=ab\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}b<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​a<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​​=ba​<pathd="M263,681c0.7,0,18,39.7,52,119c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120c340,704.7,510.7,1060.3,512,1067l00c4.7,7.3,11,11,19,11H40000v40H1012.3s271.3,567,271.3,567c38.7,80.7,84,175,136,283c52,108,89.167,185.3,111.5,232c22.3,46.7,33.8,70.3,34.5,71c4.7,4.7,12.3,7,23,7s12,1,12,1s109,253,109,253c72.7,168,109.3,252,110,252c10.7,8,22,16.7,34,26c22,17.3,33.3,26,34,26s26,26,26,26s76,59,76,59s76,60,76,60zMhv40hz">​(a≥0,b>0)(a\geq0,b>0)(a≥0,b>0)。▲化简先行原则:在大多数混合运算中,先将各项化为最简二次根式,能为后续计算扫清障碍,这是一个重要的策略意识。◆思维起点:遇到复杂的式子不要慌,先“拆解”,识别其中包含哪些基本的运算类型(加、减、乘、除、乘方),这有助于规划运算路径。任务二:厘清“施工图”——运算顺序再建立

教师活动:出示一道混合运算题:(12+18)×3−50÷2(\sqrt{12}+\sqrt{18})\times\sqrt{3}\sqrt{50}\div\sqrt{2}(12<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​+18<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​)×3<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​−50<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​÷2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​。提问:“这个算式里,出现了我们小学就学过的加、减、乘、除,还有括号。面对这样的‘综合工程’,我们应该先做什么,后做什么?运算的顺序规则有没有因为变成了二次根式而改变呢?”给予学生片刻思考后,请一位学生阐述顺序。随后,我会引导全班共同将其拆解为几个步骤:第一步,处理括号内(若有);第二步,处理乘除(同级运算从左到右);第三步,处理加减(合并同类二次根式)。我会强调:“数学世界的运算顺序是通用的‘交通规则’,不会因为车辆从整数变成二次根式就改变。请大家务必遵守规则,否则会‘计算拥堵’甚至‘得出错解’。”接着,我带领学生按照这个顺序,一步步板演,并在每一步旁标注所依据的“工具”和“顺序规则”。

学生活动:学生类比有理数的混合运算顺序,尝试说出二次根式混合运算的顺序。观察教师的规范板演,对照自己的思路,确认顺序规则的一致性。部分学生会主动在草稿纸上跟随计算。

即时评价标准:1.迁移能力:能否将有理数运算的顺序规则顺利迁移到二次根式运算中。2.程序性知识掌握:在叙述顺序时,能否清晰说明“先乘除,后加减,有括号先算括号里”的具体含义。3.步骤跟随度:在教师示范时,能否专注观察并理解每一步的意图。

形成知识、思维、方法清单:★运算顺序铁律:二次根式的混合运算顺序与有理数、整式运算顺序完全相同:先乘方,再乘除,最后加减;有括号,先算括号内的。这是保证运算正确性的根本法则。◆程序化思维:面对复杂运算,养成“先观全局定顺序,再分步执行细计算”的思维习惯,是避免顺序错误的关键。▲步骤可视化:在初学时,建议像老师板演那样,将每一步运算单独写成一行,并简要注明理由(如“化简”、“乘法运算”、“合并同类项”),这有利于自我检查和他人审阅。任务三:实战“基础工程”——规范步骤演练

教师活动:出示两道递进式例题:例1:8+32−18\sqrt{8}+3\sqrt{2}\sqrt{18}8<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​+32<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​−18<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​;例2:(5+2)(5−3)(\sqrt{5}+2)(\sqrt{5}3)(5<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​+2)(5<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​−3)。对于例1,我会提问:“同学们,拿到这道题,你的第一步打算做什么?为什么?”引导学生得出“先化简各项”的策略。然后请一位学生上台板演,要求其边写边讲解。对于例2,我会问:“这个算式像我们以前学过的什么形式?它能否直接运用某种公式简化计算?”启发学生联想到多项式乘法,并思考是否适用乘法公式。在学生尝试后,我会对比展示直接逐项相乘和视作多项式相乘两种方法,让学生体会后者在有些情况下的便捷性。我会小结:“看,在‘工具箱’里,我们不仅有基本的乘除法则,还有从整式那里继承来的‘乘法公式’这个‘高级工具’,关键是要能识别出使用它的时机。”

学生活动:独立或小组讨论思考教师提出的引导性问题。对于例1,学生积极思考“化简先行”策略,并观察同伴板演,评价其步骤规范性。对于例2,学生尝试计算,在教师引导下发现其与多项式乘法的联系,并对比不同方法的优劣。他们开始意识到,运算是需要观察和选择的。

即时评价标准:1.策略应用主动性:面对题目,是否能主动思考“先化简”或“寻找简便方法”。2.表达逻辑性:上台板演的学生能否清晰、有条理地解释每一步的运算依据。3.方法对比意识:在例2的讨论中,能否对不同方法进行比较,并简单说明看法。

形成知识、思维、方法清单:★策略一:化简优先:当算式中含有可化简的二次根式时,优先将其化为最简形式,往往能简化计算,尤其是便于后续的合并同类项。★策略二:公式助攻:二次根式的乘法满足分配律,遇到形如(a+b)(c+d)(\sqrt{a}+\sqrt{b})(\sqrt{c}+\sqrt{d})(a<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​+b<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​)(c<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​+d<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​)或类似平方差公式(m+n)(m−n)(m+n)(mn)(m+n)(m−n)的结构时,应积极运用多项式乘法的法则或乘法公式进行计算,这能大大提高效率和准确性。◆观察先行:动手计算前,花几秒钟整体观察算式的结构特征,决定运算策略,这是一种高效的数学思维习惯。任务四:挑战“综合项目”——实际应用建模

教师活动:回归导入时的“数学工作室”问题。将问题分解为两个子任务递进出示。子任务A:请列出工作室面积S的表达式。子任务B:请计算面积S的具体数值(结果保留根号)。首先,我会说:“大家先把问题静静地读两遍,尝试着用我们工具箱里的‘零件’自己搭一搭,画一画。”给予学生独立审题和列式的时间。随后,我邀请一位学生分享其列出的面积表达式:S=(32+6)(22−6)S=(3\sqrt{2}+\sqrt{6})(2\sqrt{2}\sqrt{6})S=(32<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​+6<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​)(22<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​−6<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​)。我会追问:“你是怎么想到用乘法来求面积的?长和宽这两个量是什么关系?”以此强化“矩形面积=长×宽”这一数学模型。接着,聚焦到计算这个表达式:“观察这个式子,它让你联想到任务三中的哪道例题?你打算用什么方法计算?”引导学生将其识别为多项式乘法,并选择运用分配律或视为(a+b)(c−d)(a+b)(cd)(a+b)(c−d)型展开。组织学生以小组为单位进行计算,并巡视指导,特别关注是否有学生尝试识别平方差公式(此处不是标准平方差,但可观察结构)。计算完毕后,请小组展示并对比不同展开方式。

学生活动:学生独立阅读问题,将文字语言转化为数学符号语言,列出面积表达式。在小组内,他们合作讨论如何计算这个复杂的乘法表达式,尝试运用分配律进行运算。他们可能会争论是先化简括号内的项(此处已最简)还是直接相乘。在计算过程中,体验多项式乘法与二次根式运算的结合。最终,他们需要将计算结果化简,并可能惊喜地发现结果是一个整数(6)。

即时评价标准:1.建模准确性:能否正确地将实际问题中的“长”“宽”与数学表达式对应,并选择正确的运算(乘法)建立模型。2.计算坚韧性:面对步骤稍多的计算,能否保持耐心和细致,一步步准确完成。3.合作有效性:在小组讨论中,是否积极参与,贡献思路,并倾听他人意见。

形成知识、思维、方法清单:★应用核心:数学建模:解决实际问题的关键步骤是“建模”——将实际问题中的数量关系,用数学符号和表达式正确地表示出来。例如,矩形面积问题建模为“S=长×宽”。▲运算综合性:在实际应用中,运算往往是法则、顺序、策略的全面检验。计算(32+6)(22−6)(3\sqrt{2}+\sqrt{6})(2\sqrt{2}\sqrt{6})(32<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​+6<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​)(22<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​−6<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​)需要综合运用分配律、二次根式乘法法则及合并同类项。◆结果检验:当运算结果异常简洁(如得到整数)时,这本身就是一个很好的成功反馈和检验信号,鼓励学生享受数学的简洁之美。任务五:策略“优化研讨”——方法对比提炼

教师活动:提出一个对比性问题:“计算(3+1)2(\sqrt{3}+1)^2(3<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​+1)2,你有哪些不同的方法?比比看,谁的方法更巧妙?”给学生12分钟独立思考与尝试。预计学生会出现两种主要方法:方法一:直接利用(a+b)2=a2+2ab+b2(a+b)^2=a^2+2ab+b^2(a+b)2=a2+2ab+b2公式;方法二:写成(3+1)(3+1)(\sqrt{3}+1)(\sqrt{3}+1)(3<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​+1)(3<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​+1)后按多项式乘法展开。请持不同方法的学生代表上台展示。随后,我引导学生对比:“两种方法都正确,但在计算过程、步骤多少和出错概率上,有没有差异?你更喜欢哪一种?为什么?”通过讨论,让学生自己体会到乘法公式在特定结构下带来的简洁性和可靠性。我会顺势总结:“看来,我们的‘工具箱’里,工具没有好坏之分,但有‘更合适’之说。学会根据‘工程’(算式)的特点,选择最合适的工具和工艺,才是高手。”

学生活动:学生积极尝试不同的计算方法,展示自己的解题过程。在对比讨论中,他们分析两种方法的异同,从步骤、计算量、易错点等角度评价方法的优劣。他们开始形成这样的观念:数学解题不仅追求答案正确,也追求过程优化。

即时评价标准:1.方法多样性:能否想出至少一种正确的计算方法。2.批判性思维:能否对不同的方法进行比较,并给出有理由的偏好选择。3.归纳能力:能否从具体例子的对比中,初步归纳出选择运算策略的一般性原则(如:遇平方形式,优先考虑公式)。

形成知识、思维、方法清单:★策略优化意识:数学运算追求准确与效率的统一。当算式符合乘法公式结构时,主动运用公式通常是更优策略。▲完全平方公式应用:(a+b)2=a+2ab+b(\sqrt{a}+\sqrt{b})^2=a+2\sqrt{ab}+b(a<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​+b<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​)2=a+2ab<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">​+b和(a−b)2=a−2ab+b(\sqrt{a}\sqrt{b})^2=a2\sqrt{ab}+b(a<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论