2026届山东省枣庄三中等33校高二数学第一学期期末质量跟踪监视模拟试题含解析_第1页
2026届山东省枣庄三中等33校高二数学第一学期期末质量跟踪监视模拟试题含解析_第2页
2026届山东省枣庄三中等33校高二数学第一学期期末质量跟踪监视模拟试题含解析_第3页
2026届山东省枣庄三中等33校高二数学第一学期期末质量跟踪监视模拟试题含解析_第4页
2026届山东省枣庄三中等33校高二数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山东省枣庄三中等33校高二数学第一学期期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆关于直线对称,则的最小值是()A. B.C. D.2.已知随机变量,且,,则为()A.0.1358 B.0.2716C.0.1359 D.0.27183.准线方程为的抛物线的标准方程为()A. B.C. D.4.设、是向量,命题“若,则”的逆否命题是()A.若,则 B.若,则C.若,则 D.若,则5.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种 B.120种C.240种 D.480种6.正三棱锥的侧面都是直角三角形,,分别是,的中点,则与平面所成角的余弦值为()A. B.C. D.7.命题若,且,则,命题在中,若,则.下列命题中为真命题的是()A. B.C. D.8.我国古代数学著作《算法统宗》中有这样一段记载:“一百八十九里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人共行走了189里的路程,第一天健步行走,从第二天起,因脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天行走的路程为()A.108里 B.96里C.64里 D.48里9.阿基米德(公元前287年~公元前212年)不仅是著名物理学家,也是著名的数学家,他利用“逼近法”得到的椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的对称轴为坐标轴,焦点在轴上,且椭圆的离心率为,面积为,则椭圆的标准方程为()A B.C. D.10.19世纪法国著名数学家加斯帕尔·蒙日,创立了画法几何学,推动了空间几何学的独立发展,提出了著名的蒙日圆定理:椭圆的两条切线互相垂直,则切线的交点位于一个与椭圆同心的圆上,称为蒙日圆,且该圆的半径等于椭圆长半轴长与短半轴长的平方和的算术平方根.若圆与椭圆的蒙日圆有且仅有一个公共点,则b的值为()A. B.C. D.11.已知数列是等比数列,,数列是等差数列,,则的值是()A. B.C. D.12.设满足则的最大值为A. B.2C.4 D.16二、填空题:本题共4小题,每小题5分,共20分。13.根据某市有关统计公报显示,随着“一带一路”经贸合作持续深化,该市对外贸易近几年持续繁荣,2017年至2020年每年进口总额x(单位:千亿元)和出口总额y(单位:千亿元)之间的一组数据如下:2017年2018年2019年2020年x1.82.22.63.0y2.02.83.24.0若每年的进出口总额x,y满足线性相关关系,则______;若计划2022年出口总额达到5千亿元,预计该年进口总额为______千亿元14.已知抛物线C:y2=2px(p>0)上的点P(1,y0)(y0>0)到焦点的距离为2,则p=__15.如图,SD是球O的直径,A、B、C是球O表面上的三个不同的点,,当三棱锥的底面是边长为3的正三角形时,则球O的半径为______.16.已知函数,则函数在上的最大值为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在处的切线与轴平行(1)求的值;(2)判断在上零点的个数,并说明理由18.(12分)已知数列的首项,且满足.(1)求证:数列为等差数列;(2)设,求数列的前项和.19.(12分)已知函数.(1)当时,求的最大值和最小值;(2)说明的图象由函数的图象经过怎样的变换得到?20.(12分)已知函数在处有极值,且其图象经过点.(1)求的解析式;(2)求在的最值.21.(12分)已知函数,当时,有极大值3(1)求的值;(2)求函数的极小值22.(10分)已知二次函数.(1)若时,不等式恒成立,求实数的取值范围.(2)解关于的不等式(其中).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先求出圆的圆心坐标,根据条件可得直线过圆心,从而可得,然后由,展开利用均值不等式可得答案.【详解】由圆可得标准方程为,因为圆关于直线对称,该直线经过圆心,即,,,当且仅当,即时取等号,故选:C.2、C【解析】根据正态分布的对称性可求概率.【详解】由题设可得,,故选:C.3、D【解析】的准线方程为.【详解】的准线方程为.故选:D.4、C【解析】利用原命题与逆否命题之间的关系可得结论.【详解】由原命题与逆否命题之间的关系可知,命题“若,则”的逆否命题是“若,则”.故选:C.5、C【解析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案,故选:C.【点睛】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.6、C【解析】以P为原点,PA为x轴,PB为y轴,PC为z轴,建立空间直角坐标系,利用向量法能求出PB与平面PEF所成角的正弦值.【详解】∵正三棱锥的侧面都是直角三角形,E,F分别是AB,BC的中点,∴以P为原点,PA为x轴,PB为y轴,PC为z轴,建立空间直角坐标系,设,则,,,,,,,,设平面PEF的法向量,则,取,得,设PB与平面PEF所成角为,则,∴PB与平面PEF所成角的正弦值为.故选:C.7、A【解析】根据不等式性质及对数函数的单调性判断命题的真假,根据大角对大边及正弦定理可判断命题的真假,再根据复合命题真假的判断方法即可得出结论.【详解】解:若,且,则,当时,,所以,当时,,所以,综上命题为假命题,则为真命题,在中,若,则,由正弦定理得,所以命题为真命题,为假命题,所以为真命题,,,为假命题.故选:A.8、B【解析】根据题意,记该人每天走的路程里数为,分析可得每天走的路程里数构成以的为公比的等比数列,由求得首项即可【详解】解:根据题意,记该人每天走的路程里数为,则数列是以的为公比的等比数列,又由这个人走了6天后到达目的地,即,则有,解可得:,故选:B.【点睛】本题考查数列的应用,涉及等比数列的通项公式以及前项和公式的运用,注意等比数列的性质的合理运用.9、C【解析】由题意,设出椭圆的标准方程为,然后根据椭圆的离心率以及椭圆面积列出关于的方程组,求解方程组即可得答案【详解】由题意,设椭圆的方程为,由椭圆的离心率为,面积为,∴,解得,∴椭圆的方程为,故选:C.10、B【解析】由题意求出蒙日圆方程,再由两圆只有一个交点可知两圆相切,从而列方程可求出b的值【详解】由题意可得椭圆的蒙日圆的半径,所以蒙日圆方程为,因为圆与椭圆的蒙日圆有且仅有一个公共点,所以两圆相切,所以,解得,故选:B11、B【解析】根据等差数列和等比数列下标和的性质即可求解.【详解】为等比数列,,,,;为等差数列,,,,,∴.故选:B.12、C【解析】可行域如图,则直线过点A(0,1)取最大值2,则的最大值为4,选C.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.二、填空题:本题共4小题,每小题5分,共20分。13、①.1.6;②.3.65.【解析】根据给定数表求出样本中心点,代入即可求得,取可求出该年进口总额.【详解】由数表得:,,因此,回归直线过点,由,解得,此时,,当时,即,解得,所以,预计该年进口总额为千亿元.故答案为:1.6;3.6514、2【解析】根据已知条件,结合抛物线的定义,即可求解【详解】解:∵抛物线C:y2=2px(p>0)上的点P(1,y0)(y0>0)到焦点的距离为2,∴由抛物线的定义可得,,解得p=2故答案为:215、【解析】由三棱锥是正三棱锥,利用正弦定理得出三角形外接圆的半径,进而求出,再由余弦定理得出球O的半径.【详解】因为,所以平面,三棱锥是正三棱锥,设为三角形外接圆的圆心,则在上,连接,,由得出,所以,在中,,即,解得,则球O的半径为.故答案为:16、【解析】利用导数单调性求出的单调性,比较极小值与两端点,的大小求出在上的最大值.【详解】因为,则,令,即时,函数单调递增.令,即时,函数单调递减.所以的单调递减区间为,的单调递增区间为,所以在上单调递减,在上单调递增,所以函数的极小值也是函数的最小值.,两端点为,,即最大值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0(2)f(x)在(0,π)上有且只有一个零点,理由见解析【解析】(1)利用导数的几何意义求解;(2)由,可得,令,,,,利用导数法求解.【小问1详解】解:,所以k=f′(0)=-a=0,所以a=0;【小问2详解】由,可得,令,,所以,①当时,sinx+cosx≥1,ex>1,所以g′(x)>0,所以g(x)在上单调递增,又因为g(0)=0,所以g(x)在上无零点;②当时,令,所以h′(x)=2cosxex<0,即h(x)在上单调递减,又因为,h(π)=-eπ-1<0,所以存在,,所以g(x)在上单调递增,在上单调递减,因为,g(π)=-π<0,所以g(x)在上且只有一个零点;综上所述:f(x)在(0,π)上有且只有一个零点18、(1)证明见解析(2)【解析】(1)化简得到,由此证得数列为等差数列.(2)先求得,然后利用错位相减求和法求得.【小问1详解】.又数列是以1为首项,4为公差等差数列.【小问2详解】由(1)知:,则数列的通项公式为,则,①,②,①-②得:,,,,.19、(1)2,;(2)答案见解析.【解析】(1)根据,求出范围,再根据正弦函数的图像即可求值域;(2)根据正弦函数图像变换对解析式的影响即可求解.【小问1详解】当时,有,可得,故,则的最大值为2,最小值为.【小问2详解】先将函数的图象向右平移个单位长度,得到函数的图象;然后把所得图象上各点的纵坐标不变,横坐标变为原来的2倍,得到函数的图象;最后把所得图象上各点的横坐标不变,纵坐标伸长为原来的2倍,这时得到的就是函数的图象.20、(1)(2),【解析】(1)由与解方程组即可得解;(2)求导后得到函数的单调区间与极值后,比较端点值即可得解.【详解】(1)求导得,处有极值,即,又图象过点,代入可得..(2)由(1)知,令得又,.列表如下:0230+4↘极小值↗1在时,,.【点睛】本题考查了导数的简单应用,属于基础题.21、(1);(2)0【解析】(1)由题意得,则可得到关于实数的方程组,求解方程组,即可求得的值;(2)结合(1)中的值得出函数的解析式,即可利用导数求得函数的极小值.【详解】(1),当时,有极大值3,所以,解得,经检验,满足题意,所以;(2)由(1)得,则,令,得或,列表得极小值极大值易知是函数的极小值点,所以当时,函数有极小值0【点睛】本题主要考查了函数的极值的概念,以及利用导数求解函数的极值,考查了学生对极值概念的理解与运算求解能力.22、(1);(2)答案见解析.【解析】(1)结合分离常数法、基本不等式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论