版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省温州市环大罗山联盟2026届数学高二上期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的左右焦点分别为、,过作的一条渐近线的垂线,垂足为,若的面积为,则的渐近线方程为A. B.C. D.2.圆的圆心到直线的距离为2,则()A. B.C. D.23.已知圆的圆心到直线的距离为,则圆与圆的位置关系是()A.相交 B.内切C.外切 D.外离4.直线的倾斜角的取值范围是()A. B.C. D.5.在等比数列中,,,则等于A. B.C. D.或6.在正项等比数列中,和为方程的两根,则等于()A.8 B.10C.16 D.327.设是定义在R上的可导函数,若(为常数),则()A. B.C. D.8.已知,为双曲线的左,右顶点,点P在双曲线C上,为等腰三角形,且顶角为,则双曲线C的离心率为()A. B.C.2 D.9.函数的单调增区间为()A. B.C. D.10.设点P是双曲线,与圆在第一象限的交点,、分别是双曲线的左、右焦点,且,则此双曲线的离心率为()A. B.C. D.311.双曲线的离心率为,焦点到渐近线的距离为,则双曲线的焦距等于A. B.C. D.12.不等式的解集是()A. B.C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的准线方程是,则实数___________.14.已知空间向量,,若,则______.15.已知函数在上单调递减,则的取值范围是______.16.不等式的解集为,则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中(1)讨论的单调性;(2)若不等式对一切恒成立,求实数k的最大值18.(12分)如图,在四棱锥中,平面,是等边三角形.(1)证明:平面平面.(2)求点到平面的距离.19.(12分)在中,,,为边上一点,且(1)求;(2)若,求20.(12分)已知直三棱柱中,,,E、F分别是、的中点,D为棱上的点.(1)证明:;(2)当时,求直线BF与平面DEF所成角的正弦值.21.(12分)自疫情爆发以来,由于党和国家对抗疫工作高度重视,在人民群众的不懈努力下,我国抗疫工作取得阶段性成功,国家经济很快得到复苏.在餐饮业恢复营业后,某快餐店统计了近天内每日接待的顾客人数,将前天的数据进行整理得到频率分布表和频率分布直方图.组别分组频数频率第组第组第组第组第组合计(1)求、、的值,并估计该快餐店在前天内每日接待的顾客人数的平均数;(2)已知该快餐店在前50天内每日接待的顾客人数的方差为,在后天内每日接待的顾客人数的平均数为、方差为,估计这家快餐店这天内每日接待的顾客人数的平均数和方差.()22.(10分)已知抛物线的准线方程是.(Ⅰ)求抛物线方程;(Ⅱ)设直线与抛物线相交于,两点,为坐标原点,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】求得,根据的面积列方程,由此求得,进而求得双曲线的渐近线方程.【详解】依题意,双曲线的一条渐近线为,则,所以,所以,所以.所以双曲线渐近线方程为.故选:D【点睛】本小题主要考查双曲线渐近线的有关计算,属于中档题.2、B【解析】配方求出圆心坐标,再由点到直线距离公式计算【详解】圆的标准方程是,圆心为,∴,解得故选:B.【点睛】本题考查圆的标准方程,考查点到直线距离公式,属于基础题3、B【解析】求出两圆的圆心与半径,根据两圆的位置关系的判定即可求解.【详解】已知圆的圆心到直线的距离,即,解得或,因为,所以,圆的圆心的坐标为,半径,将圆化为标准方程为,其圆心的坐标为,半径,圆心距,两圆内切,故选:B4、A【解析】由直线方程求得直线斜率的范围,再由斜率等于倾斜角的正切值可得直线的倾斜角的取值范围.【详解】∵直线的斜率,,设直线的倾斜角为,则,解得.故选:A.5、D【解析】∵为等比数列,∴,又∴为的两个不等实根,∴∴或∴故选D6、C【解析】根据和为方程两根,得到,然后再利用等比数列的性质求解.【详解】因为和为方程的两根,所以,又因为数列是等比数列,所以,故选:C7、C【解析】根据导数的定义即可求解.【详解】.故选:C.8、A【解析】根据给定条件求出点P的坐标,再代入双曲线方程计算作答.【详解】由双曲线对称性不妨令点P在第一象限,过P作轴于B,如图,因为等腰三角形,且顶角为,则有,,有,于是得,即点,因此,,解得,所以双曲线C的离心率为.故选:A9、D【解析】先求定义域,再求导数,令解不等式,即可.【详解】函数的定义域为令,解得故选:D【点睛】本题考查利用导数研究函数的单调性,属于中档题.10、C【解析】根据几何关系得到是直角三角形,然后由双曲线的定义及勾股定理可求解.【详解】点到原点的距离为,又因为在中,,所以是直角三角形,即.由双曲线定义知,又因为,所以.在中,由勾股定理得,化简得,所以.故选:C.11、D【解析】不妨设双曲线方程为,则,即设焦点为,渐近线方程为则又解得.则焦距为.选:D12、A【解析】确定对应二次方程的解,根据三个二次的关系写出不等式的解集【详解】,即为,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】将抛物线方程化为标准方程,根据其准线方程即可求得实数.【详解】抛物线化为标准方程:,其准线方程是,而所以,即,故答案为:14、2【解析】依据向量垂直充要条件列方程,解之即可解决.【详解】空间向量,,由,可知,即,解之得故答案为:215、【解析】先求导,求出函数的单调递减区间,由即可求解.【详解】,令,得,即的单调递减区间是,又在上单调递减,可得,即.故答案为:.16、【解析】由一元二次方程与一元二次不等式之间的关系可知,方程的两根是,所以因此.考点:一元二次方程与一元二次不等式之间的关系.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析(2)【解析】(1)先对函数求导,然后分和讨论导数的正负,从而可求出函数的单调区间,(2)由题意得恒成立,构造函数,利用导数求出其最小值即可【小问1详解】由,得当时,恒成立,∴在上单调递增当时,令,得,得,∴在上单调递增,在上单调递减综上所述:当时,在上单调递增;当时,在上单调递增,在上单调递减【小问2详解】依题意得对一切恒成立,即令,则令,则在上单调递增,而当时,,即;当时,,即∴在上单调递减,在上单调递增∴∴,即k的最大值为18、(1)证明见解析;(2).【解析】(1)根据等边三角形的性质、线面垂直的性质,结合面面垂直的判定定理进行证明即可;(2)利用余弦定理,结合三棱锥的等积性进行求解即可.【小问1详解】证明:设,因为是等边三角形,且,所以是的中点,则.又,所以,所以,即.又平面平面,所以.又,所以平面.因为平面,所以平面平面.【小问2详解】解:因为,所以.在中,,所以,则又平面,所以.如图,连接,则,所以.设点到平面的距离为,因为,所以,解得,即点到平面的距离为.19、(1);(2)【解析】(1)在△中,由余弦定理,即可求.(2)在中,由正弦定理,即可求.【详解】(1)在△中,,,,由余弦定理得:,∴(2)在中,,,,由正弦定理得:,即,∴20、(1)证明见解析(2)【解析】(1)由题意建立如图所示的空间直角坐标系,利用空间向量证明即可,(2)求出平面DEF的法向量,利用空间向量求解【小问1详解】证明:因为三棱柱是直三棱柱,且,所以两两垂直,所以以为原点,以所在的直线分别为轴建立空间直角坐标系,则,,设,则,所以,所以,所以【小问2详解】因为,所以,所以,设平面一个法向量为,则,令,则,设直线BF与平面DEF所成角为,则,所以直线BF与平面DEF所成角的正弦值为21、(1),,,平均数为;(2)平均数为,方差为.【解析】(1)计算出第组的频数,可求得的值,利用频数、频率和总数的关系可求出的值,求出第组的频率,除以组距可得的值,利用平均数公式可求得该快餐店在前天内每日接待的顾客人数的平均数;(2)设前天接待的顾客人数分别为、、、,后天接待的顾客人数分别为、、、,利用平均数公式和方差公式可求得结果.【小问1详解】解:由表可知第组的频数为,所以,,,第组的频率为,,前天内每日接待的顾客人数的平均数为:.【小问2详解】解:设前天接待的顾客人数分别为、、、,后天接待的顾客人数分别为、、、,则由(1)知前天的平均数,方差,后天的平均数,方差,故这天的平均数为,,同理,这天的方差,由以上三式可得.22、(Ⅰ)(Ⅱ)详见解析【解析】(Ⅰ)利用排趋性的准
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全国大学生就业创业知识竞赛试题库及答案
- 安全生产应知应会采煤部分模拟试题(含参考答案)
- 银行业务员考试题及答案
- 低频电疗法操作考试题及答案
- 大修电厂安全试题及答案
- 2026黑龙江鹤岗市鹤北人民法院招聘聘用制人员3人参考题库必考题
- 丰城市行政事业单位编外人员招聘【5人】备考题库附答案
- 兴国县2025年招聘城市社区专职网格员【23人】参考题库附答案
- 四川能投高县综合能源有限公司2025年招聘工作人员备考题库必考题
- 广安区2025年社会化选聘新兴领域党建工作专员的备考题库附答案
- 工厂验收测试(FAT)
- 麻醉药品、精神药品月检查记录
- 高职单招数学试题及答案
- 基础化学(本科)PPT完整全套教学课件
- 蕉岭县幅地质图说明书
- 玻璃幕墙分项工程质量验收记录表
- 电梯控制系统论文
- (完整word版)人教版初中语文必背古诗词(完整版)
- 湖北省地质勘查坑探工程设计编写要求
- GB/T 4310-2016钒
- GB/T 28799.3-2020冷热水用耐热聚乙烯(PE-RT)管道系统第3部分:管件
评论
0/150
提交评论