广东省江门市普通高中2026届高一上数学期末调研模拟试题含解析_第1页
广东省江门市普通高中2026届高一上数学期末调研模拟试题含解析_第2页
广东省江门市普通高中2026届高一上数学期末调研模拟试题含解析_第3页
广东省江门市普通高中2026届高一上数学期末调研模拟试题含解析_第4页
广东省江门市普通高中2026届高一上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省江门市普通高中2026届高一上数学期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线的方程是,的方程是,则下列各图形中,正确的是A. B.C. D.2.下列函数中,既是奇函数又在区间上单调递增的是()A. B.C. D.3.已知实数,满足,则函数零点所在区间是()A. B.C. D.4.直线xa2-A.|b| B.-C.b2 D.5.已知,,则的值为()A. B.C. D.6.函数f(x)=lnx﹣1的零点所在的区间是A(1,2) B.(2,3)C.(3,4) D.(4,5)7.已知某几何体的三视图如图所示,则该几何体的最长棱为()A.4 B.C. D.28.设入射光线沿直线y=2x+1射向直线,则被反射后,反射光线所在的直线方程是A. B.C. D.9.设函数的值域为R,则实数a的取值范围是()A.(-∞,1] B.[1,+∞)C.(-∞,5] D.[5,+∞)10.Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数(的单位:天)的Logistic模型:其中为最大确诊病例数.当时,标志着已初步遏制疫情,则约为()A.60 B.65C.66 D.69二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合,则的元素个数为___________.12.已知一组样本数据5、6、a、6、8的极差为5,若,则其方差为________.13.已知集合,则___________14.已知函数是定义在R上的奇函数,且,若对任意的,当时,都有成立,则不等式的解集为_____15.函数的定义域是_____________16.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的值;(2)若对任意的,都有求实数的取值范围.18.某地区每年各个月份的月平均最高气温近似地满足周期性规律,因此第个月的月平均最高气温可近似地用函数来刻画,其中正整数表示月份且,例如表示月份,和是正整数,,.统计发现,该地区每年各个月份的月平均最高气温基本相同,月份的月平均最高气温为摄氏度,是一年中月平均最高气温最低的月份,随后逐月递增直到月份达到最高为摄氏度.(1)求的解析式;(2)某植物在月平均最高气温低于摄氏度的环境中才可生存,求一年中该植物在该地区可生存的月份数.19.已知与都是锐角,且,(1)求的值;(2)求证:20.已知,函数.(1)若关于的不等式对任意恒成立,求实数的取值范围;(2)若关于的方程有两个不同实数根,求的取值范围.21.已知函数.(1)求的单调区间;(2)若,且,求值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】对于D:l1:y=ax+b,l2:y=bx-a.由l1可知a<0,b<0,对应l2也符合,2、D【解析】利用是偶函数判定选项A错误;利用判定选项B错误;利用的定义域判定选项C错误;利用奇偶性的定义证明是奇函数,再通过基本函数的单调性判定的单调性,进而判定选项D正确.【详解】对于A:是偶函数,即选项A错误;对于B:是奇函数,但,所以在区间上不单调递增,即选项B错误;对于C:是奇函数,但的定义域为,,即选项C错误;对于D:因为,,有,即奇函数;因为在区间上单调递增,在区间上单调递增,所以在区间上单调递增,即选项D正确.故选:D.3、B【解析】首先根据已知条件求出,的值并判断它们的范围,进而得出的单调性,然后利用零点存在的基本定理即可求解.【详解】∵,,∴,,∴,且为增函数,故最多只能有一个零点,∵,,∴,∴在内存在唯一的零点.故选:B.4、B【解析】由题意,令x=0,则-yb2=1,即y=-b25、C【解析】分析可知,由可求得的值.【详解】因为,则,因为,所以,,因此,.故选:C.6、B【解析】∵,在递增,而,∴函数的零点所在的区间是,故选B.7、B【解析】根据三视图得到几何体的直观图,然后结合图中的数据计算出各棱的长度,进而可得最长棱【详解】由三视图可得,该几何体是如图所示的四棱锥,底面是边长为2的正方形,侧面是边长为2的正三角形,且侧面底面根据图形可得四棱锥中的最长棱为和,结合所给数据可得,所以该四棱锥的最长棱为故选B【点睛】在由三视图还原空间几何体时,要结合三个视图综合考虑,根据三视图表示的规则,空间几何体的可见轮廓线在三视图中为实线、不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以主视图和俯视图为主,结合左视图进行综合考虑.熟悉常见几何体的三视图,能由三视图得到几何体的直观图是解题关键.考查空间想象能力和计算能力8、D【解析】由可得反射点A(−1,−1),在入射光线y=2x+1上任取一点B(0,1),则点B(0,1)关于y=x的对称点C(1,0)在反射光线所在的直线上根据点A(−1,−1)和点C(1,0)坐标,利用两点式求得反射光线所在的直线方程是,化简可得x−2y−1=0.故选D.9、B【解析】分段函数中,根据对数函数分支y=log2x的值域在(1,+∞),而函数的值域为R,可知二次函数y=-x2+a的最大值大于等于1,即可求得a的范围【详解】x>2时,y=log2x>1∴要使函数的值域为R,则y=-x2+a在x≤2上的最大值a大于等于1即,a≥1故选:B【点睛】本题考查了对数函数的值域,由函数的值域及所得对数函数的值域,判断二次函数的的值域范围进而求参数范围10、B【解析】由已知可得方程,解出即可【详解】解:由已知可得,解得,两边取对数有,解得.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】直接求出集合A、B,再求出,即可得到答案.【详解】因为集合,集合,所以,所以的元素个数为5.故答案为:5.12、2【解析】根据极差的定义可求得a的值,再根据方差公式可求得结果.【详解】因为该组数据的极差为5,,所以,解得.因为,所以该组数据的方差为故答案为:.13、【解析】根据集合的交集的定义进行求解即可【详解】当时,不等式不成立,当时,不等式成立,当时,不等式不成立,当时,不等式不成立,所以,故答案为:14、;【解析】令,则为偶函数,且,当时,为减函数所以当时,;当时,;因此当时,;当时,,即不等式的解集为点睛:利用函数性质解抽象函数不等式,实质是利用对应函数单调性,而对应函数需要构造.15、.【解析】由题意,要使函数有意义,则,解得:且.即函数定义域为.考点:函数的定义域.16、【解析】设出点的坐标,根据题意列出方程组,从而求得该点到原点的距离.【详解】设该点的坐标因为点到三个坐标轴的距离都是1所以,,,所以故该点到原点的距离为,故填.【点睛】本题主要考查了空间中点的坐标与应用,空间两点间的距离公式,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)代入后,利用余弦的二倍角公式进行求解;(2)先化简得到,进而求出的最大值,求出实数的取值范围.【小问1详解】【小问2详解】因为x∈,所以2x+∈,所以当2x+=,即x=时,取得最大值.所以对任意x∈,等价于≤c.故实数c的取值范围是.18、(1),,为正整数(2)一年中该植物在该地区可生存的月份数是【解析】(1)先利用月平均气温最低、最高的月份求出周期和及值,再利用最低气温和最高气温求出、值,即得到所求函数的解析式;(2)先判定函数的单调性,再代值确定符合要求的月份即可求解.【小问1详解】解:因为月份的月平均最高气温最低,月份的月平均最高气温最高,所以最小正周期.所以.所以,.因为,所以.因为月份的月平均最高气温为摄氏度,月份的月平均最高气温为摄氏度,所以,.所以,.所以的解析式是,,为正整数.【小问2详解】解:因为,,为正整数.所以在区间上单调递增,在区间上单调递减.因为某植物在月平均最高气温低于摄氏度的环境中才可生存,且,,所以该植物在1月份,2月份,3月份可生存.又,所以该植物在11月份,12月份也可生存.即一年中该植物在该地区可生存的月份数是.19、(1)(2)见解析【解析】(1)先确定的取值范围,再利用同角三角函数的平方关系,求得和的值,然后根据,并结合两角和的正弦公式,得解;(2)由,,结合两角和差的正弦公式,分别求出和的值,即可得证【小问1详解】解:因为与都是锐角,所以,,又,,所以,,所以,,所以;【小问2详解】证明:因为,所以①,因为,所以②,①②得,,①②得,,故20、(1);(2).【解析】(1)利用函数的单调性去掉法则转化成不等式组恒成立,再借助均值不等式计算作答.(2)求出方程的二根,再结合对数函数的意义讨论即可计算作答.【小问1详解】依题意,,,,,而恒有,于是得,,,而,当且仅当,即时取“=”,于得,因此有,所以实数取值范围是.【小问2详解】依题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论