版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济南市章丘四中2026届数学高二上期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,,在()A.25 B.30C.32 D.642.在正四面体中,棱长为2,且E是棱AB中点,则的值为A. B.1C. D.3.双曲线C:的右焦点为F,过点F作双曲线C的两条渐近线的垂线,垂足分别为H1,H2.若,则双曲线C的离心率为()A. B.C. D.24.圆和圆的位置关系是()A.内含 B.内切C.相交 D.外离5.已知实数、满足,则的最大值为()A. B.C. D.6.数学中的数形结合也可以组成世间万物的绚丽画面,-些优美的曲线是数学形象美、对称美、和谐美的产物.曲线C:为四叶玫瑰线.①方程(xy<0)表示的曲线在第二和第四象限;②曲线C上任一点到坐标原点0的距离都不超过2;③曲线C构成的四叶玫瑰线面积大于4π;④曲线C上有5个整点(横、纵坐标均为整数的点).则上述结论中正确的个数是()A.1 B.2C.3 D.47.已知梯形中,,且,则的值为()A. B.C. D.8.已知直线与平行,则系数()A. B.C. D.9.已知随机变量服从正态分布,且,则()A.0.16 B.0.32C.0.68 D.0.8410.函数的图象如图所示,是f(x)的导函数,则下列数值排序正确的是()A B.C. D.11.已知直线与直线平行,且直线在轴上的截距比在轴上的截距大,则直线的方程为()A. B.C. D.12.设函数的导函数是,若,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知命题“,”为假命题,则实数m的取值范围为______14.直线的一个法向量________.15.已知等比数列满足,则_________16.已知椭圆的两个焦点分别为,,,点在椭圆上,若,且的面积为4,则椭圆的标准方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角、、所对的边分别为、、,且(1)求证;、、成等差数列;(2)若,的面积为,求的周长18.(12分)已知椭圆的左、右顶点坐标分别是,,短轴长等于焦距.(1)求椭圆的方程;(2)若直线与椭圆相交于两点,线段的中点为,求.19.(12分)在中,角的对边分别为,已知,,且.(1)求角的大小;(2)若,面积为,试判断的形状,并说明理由.20.(12分)如图,在四棱雉中,平面ABCD,底面ABCD是直角梯形,其中,,,,E为棱BC上的点,且(1)求证:平面PAC;(2)求二面角A-PC-D的正弦值21.(12分)如图,在长方体中,,,,M为上一点,且(1)求点到平面的距离;(2)求二面角的余弦值22.(10分)已知数列的前项和为,且.(1)求的通项公式;(2)求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题中条件,得出数列公差,进而可求出结果.【详解】由得,所以数列是以为公差的等差数列,又,所以.故选:A.【点睛】本题主要考查等差数列的基本量运算,属于基础题型.2、A【解析】根据题意,由正四面体的性质可得:,可得,由E是棱中点,可得,代入,利用数量积运算性质即可得出.【详解】如图所示由正四面体的性质可得:可得:是棱中点故选:【点睛】本题考查空间向量的线性运算,考查立体几何中的垂直关系,考查转化与化归思想,属于中等题型.3、D【解析】将条件转化为该双曲线的一条渐近线的倾斜角为,可得,由离心率公式即可得解.【详解】由题意,(为坐标原点),所以该双曲线的一条渐近线的倾斜角为,所以,即,所以离心率.故选:D.4、C【解析】根据两圆圆心的距离与两圆半径和差的大小关系即可判断.【详解】解:因为圆的圆心为,半径为,圆的圆心为,半径为,所以两圆圆心的距离为,因为,即,所以圆和圆的位置关系是相交,故选:C.5、A【解析】作出可行域,利用代数式的几何意义,利用数形结合可求得的最大值.【详解】作出不等式组所表示的可行域如下图所示:联立可得,即点,代数式的几何意义是连接可行域内一点与定点连线的斜率,由图可知,当点在可行域内运动时,直线的倾斜角为锐角,当点与点重合时,直线的倾斜角最大,此时取最大值,即.故选:A.6、B【解析】对于①,由判断,对于②,利用基本不等式可判断,对于③,以为圆心,2为半径的圆的面积与曲线围成的面积进行比较即可,对于④,将和联立,求解出两曲线的切点,从而可判断【详解】对于①,由,得异号,方程(xy<0)关于原点及y=x对称,所以方程(xy<0)表示的曲线在第二和第四象限,所以①正确,对于②,因为,所以,所以,所以,所以由曲线的对称性可知曲线C上任一点到坐标原点0的距离都不超过2,所以②正确,对于③,由②可知曲线C上到原点的距离不超过2,而以为圆心,2为半径的圆的面积为,所以曲线C构成的四叶玫瑰线面积小于4π,所以③错误,对于④,将和联立,解得,所以可得圆与曲线C相切于点,,,,而点(1,1)不满足曲线方程,所以曲线在第一象限不经过任何整数点,由曲线的对称性可知曲线在其它象限也不经过任何整数点,所以曲线C上只有1个整点(0,0),所以④错误,故选:B7、D【解析】根据共线定理、平面向量的加法和减法法则,即可求得,进而求出的值,即可求出结果.【详解】因为,所以又,所以.故选:D.8、B【解析】由直线的平行关系可得,解之可得【详解】解:直线与直线平行,,解得故选:9、C【解析】根据对称性以及概率之和等于1求出,再由即可得出答案.【详解】∵随机变量服从正态分布,∴故选:C.10、A【解析】结合导数的几何意义确定正确选项.【详解】,表示两点连线斜率,表示在处切线的斜率;表示在处切线的斜率;根据图象可知,.故选:A11、A【解析】分析可知直线不过原点,可设直线的方程为,其中且,利用斜率关系可求得实数的值,化简可得直线的方程.【详解】若直线过原点,则直线在两坐标轴上的截距相等,不合乎题意,设直线的方程为,其中且,则直线的斜率为,解得,所以,直线的方程为,即.故选:A.12、A【解析】求导后,令,可求得,再令可求得结果.【详解】因为,所以,所以,所以,所以,所以.故选:A【点睛】本题考查了导数的计算,考查了求导函数值,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据命题的否定与原命题真假性相反,即可得到,为真命题,则,从而求出参数的取值范围;【详解】解:因为命题“,”为假命题,所以命题“,”为真命题,所以,解得;故答案:14、(答案不唯一)【解析】根据给定直线方程求出其方向向量,再由法向量意义求解作答.【详解】直线的方向向量为,而,所以直线的一个法向量.故答案为:15、84【解析】设公比为q,求出,再由通项公式代入可得结论【详解】设公比为q,则,解得所以故答案为:8416、【解析】由题意得到为直角三角形.设,,根据椭圆的离心率,定义,直角三角形的面积公式,勾股定理建立方程的方程组,消元后可求得的值.【详解】由题可知,∴,又,代入上式整理得,由得为直角三角形又的面积为4,设,,则解得所以椭圆的标准方程为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)利用正弦定理结合两角和的正弦公式求出的值,结合角的取值范围可求得角的值,可求得的值,即可证得结论成立;(2)利用三角形的面积公式可求得的值,结合余弦定理可求得的值,进而可求得的周长.【小问1详解】证明:由正弦定理及,得,所以,,所以,,,则,所以,,又,,,因此,、、成等差数列.【小问2详解】解:,,又,,故的周长为.18、(1);(2).【解析】(1)由椭圆顶点可知,又短轴长等于焦距可知,求出,即可写出椭圆方程(2)根据“点差法”可求直线的斜率,写出直线方程,联立椭圆方程可得,,代入弦长公式即可求解.【详解】(1)依题意,解得.故椭圆方程为.(2)设的坐标分别为,,直线的斜率显然存在,设斜率为,则,两式相减得,整理得.因为线段的中点为,所以,所以直线的方程为,联立,得,则,,故.【点睛】本题主要考查了椭圆的标准方程及简单几何性质,“点差法”,弦长公式,属于中档题.19、(1);(2)为等边三角形【解析】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得sinB(2cosA﹣1)=0,从而得角A;(2)由S△ABC=bcsinA=,可得bc=3,①;再由余弦定理a2=b2+c2﹣2bccosA可得b2+c2=6,②;联立①②可求得b=c=,从而可判断△ABC的形状【详解】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得(2sinB﹣sinC)cosA﹣sinAcosC=0,∴2sinBcosA﹣sin(A+C)=0,sinB(2cosA﹣1)=0∵0<B<π,∴sinB≠0,∴cosA=.∵0<A<π,∴A=(2)△ABC为等边三角形,∵S△ABC=bcsinA=,即bcsin=,∴bc=3,①∵a2=b2+c2﹣2bccosA,A=,a=,∴b2+c2=6,②由①②得b=c=,∴△ABC为等边三角形【点睛】本题考查三角形形状的判断,着重考查正弦定理与余弦定理的应用,考查方程思想与运算求解能力,属于中档题20、(1)证明见解析(2)【解析】建立空间直角坐标系,计算出相关点的坐标,进而计算出相关向量的坐标;(1)计算向量的数量积,,根据数量积结果为零,证明线线垂直,进而证明线面垂直2;(2)求出平面PCD的法向量和平面PAC的法向量,根据向量的夹角公式即可求解.【小问1详解】证明:因为平面ABCD,平面ABCD,平面ABCD,所以,,又因为,则以A为坐标原点,分别以AB、AD、AP所在的直线为x、y、z轴建立空间直角坐标系,则,,,,,,,,,则,,所以,,又,平面PAC,平面PAC,∴平面PAC;【小问2详解】解:由(1)可知平面PAC,可作为平面PAC的法向量,设平面PCD的法向量,因为,所以,即,不妨设,得,又由图示知二面角为锐角,所以二面角的正弦值为21、(1)(2)【解析】(1)以A为原点,以AB、AD、所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,利用空间向量求解,(2)求出和的法向量,利用空间向量求解【小问1详解】以A为原点,以AB、AD、所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师作业布置题库及答案
- 传染学考试试题及答案
- IBM(中国)招聘面试题及答案
- 大学课程改革考试题及答案
- 中电科金仓(北京)科技股份有限公司2026应届毕业生招聘考试备考题库必考题
- 兴国县2025年公开选调食品安全监管人员的参考题库附答案
- 北京市海淀区卫生健康委员会所属事业单位面向社会招聘14人备考题库附答案
- 南充市自然资源和规划局2025年公开遴选公务员(2人)参考题库必考题
- 四川省卫健委所属事业单位西南医科大学附属口腔医院2025年12月公开考核招聘工作人员的备考题库附答案
- 广安区2025年社会化选聘新兴领域党建工作专员的参考题库附答案
- 北京市丰台二中2026届数学高一上期末考试试题含解析
- LNG气化站安装工程施工设计方案
- 核酸口鼻采样培训
- 企业安全隐患排查课件
- 2025版《煤矿安全规程》宣贯解读课件(电气、监控与通信)
- (新教材)2026年部编人教版一年级下册语文 语文园地一 课件
- DB43-T 2066-2021 河湖管理范围划定技术规程
- 2025核电行业市场深度调研及发展趋势与商业化前景分析报告
- 急惊风中医护理查房
- 营地合作分成协议书
- GB/T 70.2-2025紧固件内六角螺钉第2部分:降低承载能力内六角平圆头螺钉
评论
0/150
提交评论