版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届上海市风华中学数学高一上期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,则等于()A. B.C. D.2.当点在圆上变动时,它与定点的连线的中点的轨迹方程是()A. B.C. D.3.在中,“”是“”的()A.充要条件 B.充分非必要条件C必要非充分条件 D.既非充分又非必要条件4.函数的零点的个数为A. B.C. D.5.如图程序框图的算法源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的值分别为30,12,0,经过运算输出,则的值为()A.6 B.C.9 D.6.下列叙述正确的是()A.三角形的内角是第一象限角或第二象限角 B.钝角是第二象限角C.第二象限角比第一象限角大 D.不相等的角终边一定不同7.已知集合,则集合中元素的个数为()A.1 B.2C.3 D.48.函数的一个零点在区间内,则实数的取值范围是()A. B.C. D.9.下列区间包含函数零点的为()A. B.C. D.10.下列函数中,能用二分法求零点的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某时钟的秒针端点到中心点的距离为6cm,秒针均匀地绕点旋转,当时间时,点与钟面上标12的点重合,将,两点的距离表示成的函数,则_______,其中12.已知函数的部分图象如图所示,则____________13.已知向量,且,则_______.14.若幂函数是偶函数,则___________.15.已知命题“∀x∈R,e x≥a”16.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平行四边形中,过点作的垂线交的延长线于点,.连结交于点,如图1,将沿折起,使得点到达点的位置.如图2.证明:直线平面若为的中点,为的中点,且平面平面求三棱锥的体积.18.已知函数为奇函数(1)求的值;(2)判断的单调性,并用定义证明;(3)解不等式19.已知函数是定义域为的奇函数.(1)求实数的值;(2)若,不等式在上恒成立,求实数的取值范围;(3)若,且函数在上最小值为,求的值.20.如图,在三棱锥中,底面,,,分别是,的中点.(1)求证:平面;(2)求证:.21.在平面直角坐标系中,圆经过三点(1)求圆的方程;(2)若圆与直线交于两点,且,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据三角函数的诱导公式即可化简求值.【详解】∵,,,,,.故选:D.2、D【解析】设中点的坐标为,则,利用在已知的圆上可得的中点的轨迹方程.【详解】设中点的坐标为,则,因为点在圆上,故,整理得到.故选:D.【点睛】求动点的轨迹方程,一般有直接法和间接法,(1)直接法,就是设出动点的坐标,已知条件可用动点的坐标表示,化简后可得动点的轨迹方程,化简过程中注意变量的范围要求.(2)间接法,有如下几种方法:①几何法:看动点是否满足一些几何性质,如圆锥曲线的定义等;②动点转移:设出动点的坐标,其余的点可以前者来表示,代入后者所在的曲线方程即可得到欲求的动点轨迹方程;③参数法:动点的横纵坐标都可以用某一个参数来表示,消去该参数即可动点的轨迹方程.3、A【解析】结合三角形内角与充分、必要条件的知识确定正确选项.【详解】在中,,所以,所以在中,“”是“”的充要条件.故选:A4、B【解析】略【详解】因为函数单调递增,且x=3,y>0,x=1,y<0,所以零点个数为15、D【解析】利用程序框图得出,再利用对数的运算性质即可求解.【详解】当时,,,当时,,,当时,,,当时,,所以.故选:D【点睛】本题考查了循环结构嵌套条件结构以及对数的运算,解题的关键是根据程序框图求出输出的结果,属于基础题.6、B【解析】利用象限角、钝角、终边相同角的概念逐一判断即可.【详解】∵直角不属于任何一个象限,故A不正确;钝角属于是第二象限角,故B正确;由于120°是第二象限角,390°是第一象限角,故C不正确;由于20°与360°+20°不相等,但终边相同,故D不正确.故选B【点睛】本题考查象限角、象限界角、终边相同的角的概念,综合应用举反例、排除等手段,选出正确的答案7、D【解析】由题意,集合是由点作为元素构成的一个点集,根据,即可得到集合的元素.【详解】由题意,集合B中元素有(1,1),(1,2),(2,1),(2,2),共4个.故选D【点睛】与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集(2)看这些元素满足什么限制条件(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性8、C【解析】根据零点存在定理得出,代入可得选项.【详解】由题可知:函数单调递增,若一个零点在区间内,则需:,即,解得,故选:C.【点睛】本题考查零点存在定理,属于基础题.9、C【解析】根据零点存在定理,分别判断选项区间的端点值的正负可得答案.【详解】,,,,,又为上单调递增连续函数故选:C.10、D【解析】利用零点判定定理以及函数的图象,判断选项即可【详解】由题意以及零点判定定理可知:只有选项D能够应用二分法求解函数的零点,故选D【点睛】本题考查了零点判定定理的应用和二分法求解函数的零点,是基本知识的考查二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设函数解析式为,由题意将、代入求出参数值,即可得解析式.【详解】设,由题意知:,当时,,则,,令得;当时,,则,,令得,所以.故答案为:.12、①.②.【解析】分析:先根据四分之一周期求根据最高点求.详解:因为因为点睛:已知函数的图象求解析式(1).(2)由函数周期求(3)利用“五点法”中相对应的特殊点求.13、2【解析】由题意可得解得.【名师点睛】(1)向量平行:,,.(2)向量垂直:.(3)向量的运算:.14、【解析】根据幂函数的定义得,解得或,再结合偶函数性质得.【详解】解:因为函数是幂函数,所以,解得或,当时,,为奇函数,不满足,舍;当时,,为偶函数,满足条件.所以.故答案为:15、a≤0【解析】根据∀x∈R,e x≥a成立,【详解】因为∀x∈R,e所以e 则a≤0,故答案为:a≤016、①②④【解析】①取BD的中点O,连接OA,OC,所以,所以平面OAC,所以AC⊥BD;②设正方形的边长为a,则在直角三角形ACO中,可以求得OC=a,所以△ACD是等边三角形;③AB与平面BCD成45角;④分别取BC,AC的中点为M,N,连接ME,NE,MN.则MN∥AB,且MN=AB=a,ME∥CD,且ME=CD=a,∴∠EMN是异面直线AB,CD所成的角.在Rt△AEC中,AE=CE=a,AC=a,∴NE=AC=a.∴△MEN是正三角形,∴∠EMN=60°,故④正确考点:本小题主要考查平面图形向空间图形的折叠问题,考查学生的空间想象能力.点评:解决此类折叠问题,关键是搞清楚折叠前后的变量和不变的量.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】(1)在平面图形内找到,则在立体图形中,可证面.(2)解法一:根据平面平面,得到平面,得到到平面的距离,根据平面图形求出底面平的面积,求得三棱锥的体积.解法二:找到三棱锥的体积与四棱锥的体积之间的关系比值关系,先求四棱锥的体积,从而得到三棱锥的体积.【详解】证明:如图1,中,所以.所以也是直角三角形,,如图题2,所以平面.解法一:平面平面,且平面平面,平面,平面.取的中点为,连结则平面,即为三棱锥的高..解法二:平面平面,且平面平面,平面,平面.为的中点,三棱锥的高等于.为的中点,的面积是四边形的面积的,三棱锥的体积是四棱锥的体积的三棱锥的体积为.【点睛】本题考查线面垂直的判定,面面垂直的性质,以及三棱锥体积的计算,都是对基础内容的考查,属于简单题.18、(1)(2)单调递减,证明见解析(3)【解析】(1)根据奇函数性质求解即可;(2)根据定义法严格证明单调性,注意式子正负的判断即可求解;(3)根据奇函数性质化简不等式得,再根据函数单调性得到,代入函数解不等式即可求解.【小问1详解】因为为奇函数且的定义域为,所以由奇函数性质得,解得,当时,,,即,符合题意.【小问2详解】在上单调递减,证明如下:由(1)知,,,时,,因为,所以,,所以,即在上单调递减【小问3详解】因为,所以,因为为奇函数,,所以,又因为在上单调递减,所以,即,所以,即,解得,即不等式的解集为19、(1)0(2)(3)2.【解析】(1)是定义域为的奇函数,由,得到的值;(2)根据得到的范围,从而得到的单调性,结合的奇偶性,得到将不等式转化为在上恒成立,通过得到的范围;(3)由得到,从而得到解析式,令,得到,动轴定区间分类讨论,根据最小值为,得到的值.【详解】(1)因为是定义域为的奇函数,所以,所以,所以,经检验,当时,为上的奇函数(2)由(1)知:,因为,所以,又且,所以,所以是.上的单调递减函数,又是定义域为的奇函数,所以,即在上恒成立,所以,即,所以实数的取值范围为(3)因为,所以,解得或(舍去),所以,令,则,因为在R上为增函数,且,所以,因为在上最小值为,所以在上的最小值为,因为的对称轴为,所以当时,,解得或(舍去),当时,,解得(舍去),综上可知:.【点睛】本题考查根据函数奇偶性求参数的值,根据函数的性质解不等式,二次函数在上恒成立问题,根据函数的最小值求参数的范围,运用了换元的方法,属于中档题.20、(1)证明过程见解析;(2)证明过程见解析.【解析】(1)利用三角形中位线定理,结合线面平行的判定定理进行证明即可;(2)利用线面垂直的性质,结合线面垂直的判定定理进行证明即可.【详解】(1)因为,分别是,的中点,所以,又因为平面,平面,所以平面;(2)因为底面,底
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 精神科护士的心理护理专业素养提升
- 医院面试题及参考答案
- 内镜室三季度院感试题附答案
- 国家公务员考试选词填空习题带答案
- 期货知识考试题及答案
- 中医妇科学习题库及参考答案
- 公共营养师考试试题附答案
- 2025年医疗机构感染防控知识测试题(附答案)
- 工程造价考试题及答案
- 2025年人工智能与健康考试题库试题及答案
- 中职班会课主题课件
- 政务服务大厅安全隐患排查
- 土建资料管理课件
- 钣金检验作业指导书
- 公司安全大讲堂活动方案
- 2025年江苏省无锡市梁溪区八下英语期末统考模拟试题含答案
- GB/T 42186-2022医学检验生物样本冷链物流运作规范
- 江苏省南通市2024-2025学年高一上学期1月期末考试数学试题
- T/CA 105-2019手机壳套通用规范
- 以真育责:小学生责任教育在求真理念下的探索与实践
- 2019营口天成消防JB-TB-TC5120 火灾报警控制器(联动型)安装使用说明书
评论
0/150
提交评论