版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河北省深州市长江中学高二数学第一学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆的圆心到直线的距离为,则圆与圆的位置关系是()A.相交 B.内切C.外切 D.外离2.函数在上的最小值为()A. B.4C. D.3.在等差数列中,为其前项和,若.则()A. B.C. D.4.函数,的最小值为()A.2 B.3C. D.5.各项均为正数的等比数列的前项和为,若,,则()A. B.C. D.6.二次方程的两根为2,,那么关于的不等式的解集为()A.或 B.或C. D.7.函数的导函数的图象如图所示,则下列说法正确的是()A.函数在上单调递增B.函数的递减区间为C.函数在处取得极大值D.函数在处取得极小值8.已知椭圆与双曲线有共同的焦点,则()A.14 B.9C.4 D.29.已知平面上两点,则下列向量是直线的方向向量是()A. B.C. D.10.若关于一元二次不等式的解集为,则实数的取值范围是()A. B.C. D.11.已知点,点关于原点对称点为,则()A. B.C. D.12.某地政府为落实疫情防控常态化,不定时从当地780名公务员中,采用系统抽样的方法抽取30人做核酸检测.把这批公务员按001到780进行编号,若018号被抽中,则下列编号也被抽中的是()A.076 B.122C.390 D.522二、填空题:本题共4小题,每小题5分,共20分。13.已知函数(1)求函数的最小正周期和单调递增区间;(2)在锐角三角形中,角,,所对的边分别为,,,若,,,求的面积14.已知双曲线的两个焦点分别为,,为双曲线上一点,且,则的值为________15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________16.已知集合,集合,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左、右焦点分别为,离心率为,圆:过椭圆的三个顶点,过点的直线(斜率存在且不为0)与椭圆交于两点(1)求椭圆的标准方程(2)证明:在轴上存在定点,使得为定值,并求出定点的坐标18.(12分)曲线与曲线在第一象限的交点为.曲线是()和()组成的封闭图形.曲线与轴的左交点为、右交点为.(1)设曲线与曲线具有相同的一个焦点,求线段的方程;(2)在(1)的条件下,曲线上存在多少个点,使得,请说明理由.(3)设过原点的直线与以为圆心的圆相切,其中圆的半径小于1,切点为.直线与曲线在第一象限的两个交点为..当对任意直线恒成立,求的值.19.(12分)已知,两地的距离是.根据交通法规,,两地之间的公路车速(单位:)应满足.假设油价是7元/,以的速度行驶时,汽车的耗油率为,当车速为时,汽车每小时耗油,司机每小时的工资是91元.(1)求的值;(2)如果不考虑其他费用,当车速是多少时,这次行车的总费用最低?20.(12分)如图,在平面直角坐标系xOy中,已知抛物线C:y2=4x经过点A(1,2),直线l:y=kx+b与抛物线C交于M,N两点.(1)若,求直线l的方程;(2)当AM⊥AN时,若对任意满足条件的实数k,都有b=mk+n(m,n为常数),求m+2n的值.21.(12分)已如空间直角标系中,点都在平面内,求实数y的值22.(10分)已知抛物线C:经过点.(1)求抛物线C的方程及其准线方程;(2)经过抛物线C的焦点F的直线l与抛物线交于两点M,N,且与抛物线的准线交于点Q.若,求直线l的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出两圆的圆心与半径,根据两圆的位置关系的判定即可求解.【详解】已知圆的圆心到直线的距离,即,解得或,因为,所以,圆的圆心的坐标为,半径,将圆化为标准方程为,其圆心的坐标为,半径,圆心距,两圆内切,故选:B2、D【解析】求出导数,由导数确定函数在上的单调性与极值,可得最小值【详解】,所以时,,递减,时,,递增,所以是在上的唯一极值点,极小值也是最小值.故选:D3、C【解析】利用等差数列的性质和求和公式可求得的值.【详解】由等差数列的性质和求和公式可得.故选:C.4、B【解析】求导函数,分析单调性即可求解最小值【详解】由,得,当时,,单调递减;当时,,单调递增∴当时,取得最小值,且最小值为故选:B.5、D【解析】根据等比数列性质可知,,,成等比数列,由等比中项特点可构造方程求得,由等比数列通项公式可求得,进而得到结果.【详解】由等比数列的性质可得:,,,成等比数列,则,即,解得:,,,解得:.故选:D.6、B【解析】根据,确定二次函数的图象开口方向,再由二次方程的两根为2,,写出不等式的解集.【详解】因为二次方程的两根为2,,又二次函数的图象开口向上,所以不等式的解集为或,故选:B7、C【解析】根据函数单调性与导数之间的关系及极值的定义结合图像即可得出答案.【详解】解:根据函数的导函数的图象可得,当时,,故函数在和上递减,当时,,故函数在和上递增,所以函数在和处取得极小值,在处取得极大值,故ABD错误,C正确.故选:C.8、C【解析】根据给定条件结合椭圆、双曲线方程的特点直接列式计算作答.【详解】设椭圆半焦距为c,则,而椭圆与双曲线有共同的焦点,则在双曲线中,,即有,解得,所以.故选:C9、D【解析】由空间向量的坐标运算和空间向量平行的坐标表示,以及直线的方向向量的定义可得选项.【详解】解:因为两点,则,又因为与向量平行,所以直线的方向向量是,故选:D.10、B【解析】结合判别式求得的取值范围.【详解】由于关于的一元二次不等式的解集为,所以,解得,所以实数的取值范围是.故选:B11、C【解析】根据空间两点间距离公式,结合对称性进行求解即可.【详解】因为点关于原点的对称点为,所以,因此,故选:C12、B【解析】根据系统抽样的特点,写出组数与对应抽取编号的关系式,即可判断和选择.【详解】根据题意,780名公务员中,采用系统抽样的方法抽取30人,则需要分为组,每组人;设第组抽取的编号为,故可设,又第一组抽中号,故可得,解得故,当时,.故选:.二、填空题:本题共4小题,每小题5分,共20分。13、(1)最小正周期,,;(2)【解析】(1)根据降幂公式、辅助角公式化简函数的解析式,再利用正弦型函数的最小正周期公式、单调性进行求解即可;(2)根据特殊角的三角函数值,结合三角形面积公式进行求解即可.【详解】(1),所以的最小正周期令,,解得,,所以的单调递增区间为,(2)因为,所以,即,又,所以,所以或,或,当时,,不符合题意,舍去;当时,,符合题意,所以,,,,此时为等腰三角形,所以,所以,即的面积为14、2【解析】求得双曲线的a,b,c,不妨设P为双曲线右支上的点,|PF1|=m,|PF2|=n,利用双曲线的定义、余弦定理列出方程组,求出mn即可.【详解】双曲线的a=2,b=1,c=,不妨设P为双曲线右支上的点,|PF1|=m,|PF2|=n,则,①由余弦定理可得,②联立①②可得故答案为:215、18【解析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查【详解】前四场中有一场客场输,第五场赢时,甲队以获胜的概率是前四场中有一场主场输,第五场赢时,甲队以获胜的概率是综上所述,甲队以获胜的概率是【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以获胜的两种情况;易错点之三是是否能够准确计算16、##(-1,2]【解析】根据两集合的并集的含义,即可得答案.【详解】因为集合,集合,所以,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析,定点【解析】(1)先判断圆经过椭圆的上、下顶点和右顶点,令圆方程中的,得,即.再由求即可.(2)设在轴上存在定点,使得为定值,根据题意,设直线的方程为,联立可得,再运算将韦达定理代入化简有与k无关即可.【详解】(1)由圆方程中的时,的两根不为相反数,故可设圆经过椭圆的上、下顶点和右顶点,令圆方程中的,得,即有又,解得∴椭圆的标准方程为(2)证明:设在轴上存在定点,使得为定值,由(1)可得,设直线的方程为,联立可得,设,则,,要使为定值,只需,解得∴在轴上存在定点,使得为定值,定点的坐标为【点睛】本题主要考查椭圆的几何性质和直线与椭圆的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题.18、(1)或;(2)一共2个,理由见解析;(3)答案见解析.【解析】(1)先求曲线的焦点,再求点的坐标,分焦点为左焦点或右焦点,求线段的方程;(2)分点在双曲线或是椭圆的曲线上,结合条件,说明点的个数;(3)首先设出直线和圆的方程,利用直线与圆相切,以及直线与曲线相交,分别表示,并计算得到的值.【详解】(1)两个曲线相同的焦点,,解得:,即双曲线方程是,椭圆方程是,焦点坐标是,联立两个曲线,得,,即,当焦点是右焦点时,线段的方程当焦点时左焦点时,,,线段的方程(2),假设点在曲线上单调递增∴所以点不可能在曲线上所以点只可能在曲线上,根据得可以得到当左焦点,,同样这样的使得不存在所以这样的点一共2个(3)设直线方程,圆方程为直线与圆相切,所以,,根据得到补充说明:由于直线的曲线有两个交点,受参数的影响,蕴含着如下关系,∵,当,存在,否则不存在这里可以不需讨论,因为题目前假定直线与曲线有两个交点的大前提,当共焦点时存在不存在.【点睛】关键点点睛:本题考查直线与椭圆和双曲线相交的综合应用,本题的关键是曲线由椭圆和双曲线构成,所以研究曲线上的点时,需分两种情况研究问题.19、(1);(2).【解析】(1)根据题中给出的车速和油耗之间的关系式,结合已知条件,待定系数即可;(2)根据题意求得以行驶所用时间,构造费用关于的函数,利用导数研究其单调性和最值,即可求得结果.【小问1详解】因为汽车以的速度行驶时,汽车的耗油率为,又当时,,解得.【小问2详解】若汽车的行驶速度为,则从地到地所需用时,则这次行车的总费用,则,令,解得,则当,,单调递减,即.故时,该次行车总费用最低.20、(1)(2)3或【解析】(1)由可得,则可得直线为,设,然后将直线方程代入抛物线方程中消去,再利用根与系数的关系,由可得,三个式子结合可求出,从而可得直线方程,(2)将直线方程代入抛物线方程中消去,再利用根与系数的关系表示出,再结合直线方程表示出,由AM⊥AN可得,化简结合前面的式子可求出或,从而可可求出的值,进而可求得答案【小问1详解】因为A(1,2),,所以,则直线为,设,由,得,由,得则,因为,所以,所以,所以,所以,解得,所以直线的方程为,即,【小问2详解】设,由,得,由,得,则,所以,,因为AM⊥AN,所以,所以,即,所以,所以,所以或,所以或,所以或21、【解析】方法一:根据平面向量基本定理即可解出;方法二:先求出平面的一个法向量,再根据即可求出【详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年北京中牧实业股份有限公司高校毕业生招聘笔试真题
- 2025年吴忠市利通区网格员招聘考试真题
- 广西钦州市2025-2026学年高二上学期1月月考语文试卷(含答案)
- 2025新疆生产建设兵团第一师库沙新拜产业园医院财务岗位招聘1人备考题库及一套参考答案详解
- 2026上海复旦大学相辉研究院招聘相辉研究院学术服务专员岗位1名备考题库及完整答案详解一套
- 高一历史同步课堂第20课 五四运动与中国共产党的诞生(课后分层练)(原卷版)
- MRI检查知情同意书(最终定稿)
- 智能研修模式在提升高校学生国际视野中的应用研究教学研究课题报告
- 医疗美容行业2025年数字化升级技术创新与市场潜力研究报告
- 车间安全生产操作规章制度
- 复方蒲公英注射液在银屑病中的应用研究
- 2023届高考语文二轮复习:小说标题的含义与作用 练习题(含答案)
- 网络直播创业计划书
- 大学任课老师教学工作总结(3篇)
- 3D打印增材制造技术 课件 【ch01】增材制造中的三维模型及数据处理
- 医院保洁应急预案
- 化工设备培训
- 钢结构安装施工专项方案
- 高三体育生收心主题班会课件
- FZ/T 90086-1995纺织机械与附件下罗拉轴承和有关尺寸
- 登杆培训材料课件
评论
0/150
提交评论