版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省周口市西华县2026届高一数学第一学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则的值是()A. B.C. D.12.函数的图像向左平移个单位长度后是奇函数,则在上的最小值是()A. B.C. D.3.下列各角中,与角1560°终边相同的角是()A.180° B.-240°C.-120° D.60°4.若两条平行直线与之间的距离是,则m+n=A.0 B.1C.-2 D.-15.某几何体的三视图如图所示,则它的体积是A.B.C.D.6.已知函数,则方程的实数根的个数为()A. B.C. D.7.表示不超过实数的最大整数,是方程的根,则()A. B.C. D.8.若,,,则的大小关系为()A. B.C. D.9.若幂函数的图像经过点,则A.1 B.2C.3 D.410.已知函数f(x)=有两不同的零点,则的取值范围是()A.(−∞,0) B.(0,+∞)C.(−1,0) D.(0,1)二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数的图象经过点(16,4),则k-a的值为___________12.实数,满足,,则__________13.已知函数的图象恒过定点A,若点A在一次函数的图象上,其中,则的最小值为_____________.14.定义在上的奇函数满足:对于任意有,若,则的值为__________.15.已知空间中两个点A(1,3,1),B(5,7,5),则|AB|=_____16.要制作一个容器为4,高为无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的最小正周期为,其中(1)求的值;(2)当时,求函数单调区间;(3)求函数在区间上的值域18.若两个函数和对任意,都有,则称函数和在上是疏远的(1)已知命题“函数和在上是疏远的”,试判断该命题的真假.若该命题为真命题,请予以证明;若为假命题,请举反例;(2)若函数和在上是疏远的,求整数a的取值范围19.已知函数(1)画出的图象,并根据图象写出的递增区间和递减区间;(2)当时,求函数的最小值,并求y取最小值时x的值.(结果保留根号)20.(1)已知,,求的值;(2)若,求的值.21.已知全集,集合,.(1)当时,求;(2)如果,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由求出a、b,表示出,进而求出的值.详解】由,.故选:D2、D【解析】由函数图像平移后得到的是奇函数得,再利用三角函数的图像和性质求在上的最小值.【详解】平移后得到函数∵函数为奇函数,故∵,∴,∴函数为,∴,时,函数取得最小值为故选【点睛】本题主要考查三角函数图像的变换,考查三角函数的奇偶性和在区间上的最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.3、B【解析】终边相同的角,相差360°的整数倍,据此即可求解.【详解】与1560°终边相同的角为,,当时,.故选:B.4、C【解析】根据直线平行得到,根据两直线的距离公式得到,得到答案.【详解】由,得,解得,即直线,两直线之间的距离为,解得(舍去),所以故答案选C.【点睛】本题考查了直线平行,两平行直线之间的距离,意在考查学生的计算能力.5、A【解析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是.6、B【解析】由已知,可令,要求,即为,原题转化为直线与的图象的交点情况,通过画出函数的图象,讨论的取值,即可直线与的图象的交点情况.【详解】令,则,①当时,,,,即,②当时,,,画出函数的图象,如图所示,若,即,无解;若,直线与的图象有3个交点,即有3个不同实根;若,直线与的图象有2个交点,即有2个不同实根;综上所述,方程的实数根的个数为5个,故选:7、B【解析】先求出函数的零点的范围,进而判断的范围,即可求出.【详解】由题意可知是的零点,易知函数是(0,)上的单调递增函数,而,,即所以,结合性质,可知.故选B.【点睛】本题考查了函数的零点问题,属于基础题8、A【解析】由指数函数的单调性可知,由对数函数的单调性可知,化简,进而比较大小即可【详解】因为在上是增函数,所以;在上是增函数,所以;,所以,故选:A【点睛】本题考查指数、对数比较大小问题,考查指数函数、对数函数的单调性的应用9、B【解析】由题意可设,将点代入可得,则,故选B.10、A【解析】函数f(x)=有两不同的零点,可以转化为直线与函数的图象有两个不同的交点,构造不等式即可求得的取值范围.【详解】由题可知方程有两个不同的实数根,则直线与函数的图象有两个不同的交点,作出与的大致图象如下:不妨设,由图可知,,整理得,由基本不等式得,(当且仅当时等号成立)又,所以,解得,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据幂函数的定义得到,代入点,得到的值,从而得到答案.【详解】因为为幂函数,所以,即代入点,得,即,所以,所以.故答案为:.12、8【解析】因为,,所以,,因此由,即两交点关于(4,4)对称,所以8点睛:利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合的思想求解.13、4【解析】由题意可知定点A(1,1),所以m+n=1,因为,所以,当时,的最小值为4.14、【解析】由可得,则可化简,利用可得,由是在上的奇函数可得,由此【详解】由题,因为,所以,由,则,则,因为,令,则,所以,因为是在上的奇函数,所以,所以,故答案:0【点睛】本题考查函数奇偶性、周期性的应用,考查由正切值求正、余弦值15、【解析】直接代入空间中两点间的距离公式即可得解.【详解】∵空间中两个点A(1,3,1),B(5,7,5),∴|AB|4故答案为:4【点睛】本题考查空间中两点间的距离公式,属于基础题.16、160【解析】设底面长方形的长宽分别为和,先求侧面积,进一步求出总的造价,利用基本不等式求出最小值.【详解】设底面长方形的长宽分别为和,则,所以总造价当且仅当的时区到最小值则该容器的最低总造价是160.故答案为:160.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)函数的单调减区间为,单调增区间为(3)【解析】(1)利用求得.(2)根据三角函数单调区间的求法,求得在区间上的单调区间.(3)根据三角函数值域的求法,求得在区间上的值域.【小问1详解】由函数的最小正周期为,,所以,可得,【小问2详解】由(1)可知,当,有,,当,可得,故当时,函数单调减区间为,单调增区间为【小问3详解】当,有,,可得,有,故函数在区间上的值域为18、(1)该命题为假命题,反例为:当时,.(2).【解析】(1)利用“疏远函数”的定义直接判断即可,以或举例即可;(2)由函数的定义域可确定实数,构造函数,可证当时,恒成立,即函数和在上是疏远的【小问1详解】该命题为假命题,反例为:当时,.【小问2详解】由函数的定义域可知,故记∵在上单调递增,在上单调递减,∴在上单调递增,∴当时,,不满足;当时,,不满足;当时,,∴当时,故.19、(1)作图见解析,递增区间为,递减区间为;(2)最小值为,y取最小值时.【解析】(1)由即得图象,由图象即得单调区间;(2)利用基本不等式即得.【小问1详解】由函数,图象如图:递增区间为,递减区间为;(注:写成也可以)【小问2详解】当时,,等号当且仅当时成立,∴的最小值为,y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年昆明市事业单位公开招聘工作人员(1771人)备考考试试题及答案解析
- 浙商银行湖州分行2026年一季度社会招聘考试参考试题及答案解析
- 2026国家空间科学中心小牛坊中子堆宇宙线台站招聘1人备考题库及答案详解参考
- 2026四川雅安市监察留置看护人员招聘90人备考题库含答案详解
- 2026年台州温岭市箬横镇中心卫生院招聘编制外工作人员2人备考考试试题及答案解析
- 2026六盘水师范学院招聘8人备考考试试题及答案解析
- 2026山东事业单位统考威海乳山招聘初级综合类岗位人员39人备考题库及完整答案详解
- 2026北京建筑大学第一批次聘用制岗位招聘16人备考题库及1套参考答案详解
- 2026广东广州市天河区华南师范大学招聘教辅人员2人备考题库含答案详解
- 2026上半年贵州事业单位联考贵州商学院招聘9人备考考试试题及答案解析
- 园林苗木的种实生产
- 钢管支架贝雷梁拆除施工方案
- JJG 365-2008电化学氧测定仪
- 2024年新安全生产法培训课件
- 卷闸门合同书
- 煤矿运输知识课件
- (全册完整版)人教版五年级数学上册100道口算题
- 人口信息查询申请表(表格)
- 一年级上册数学期末质量分析报告
- 公共视频监控系统运营维护要求
- 教育科学规划课题中期报告 (双减背景下家校共育策略研究)
评论
0/150
提交评论