版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江西高安中学高二上数学期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,点A的坐标为,点C的坐标为,函数,若在矩形内随机取一点,则此点取自阴影部分的概率等于()A. B.C. D.2.椭圆的短轴长为()A.8 B.2C.4 D.3.将正整数1,2,3,4,…按如图所示的方式排成三角形数组,则第19行从左往右数第5个数是()A.381 B.361C.329 D.4004.已知命题P:,,则命题P的否定为()A., B.,C., D.,5.已知直线和圆相交于两点.若,则的值为()A. B.C. D.6.已知圆与抛物线的准线相切,则实数p的值为()A.2 B.6C.3或8 D.2或67.已知直线的方向向量为,则直线l的倾斜角为()A.30° B.60°C.120° D.150°8.某学生2021年共参加10次数学竞赛模拟考试,成绩分别记为,,,…,,为研究该生成绩的起伏变化程度,选用一下哪个数字特征最为合适()A.,,,…,的平均值; B.,,,…,的标准差;C.,,,…,的中位数; D.,,,…,的众数;9.执行如图所示的算法框图,则输出的结果是()A. B.C. D.10.某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45]岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是()A.31.6岁 B.32.6岁C.33.6岁 D.36.6岁11.已知条件:,条件:表示一个椭圆,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.函数在的图象大致为()A. B.C D.二、填空题:本题共4小题,每小题5分,共20分。13.根据某市有关统计公报显示,随着“一带一路”经贸合作持续深化,该市对外贸易近几年持续繁荣,2017年至2020年每年进口总额x(单位:千亿元)和出口总额y(单位:千亿元)之间一组数据如下:2017年2018年2019年2020年x1.82.22.63.0y2.02.83.24.0若每年的进出口总额x,y满足线性相关关系,则______;若计划2022年出口总额达到5千亿元,预计该年进口总额为______千亿元14.在报名的3名男教师和3名女教师中,选取3人参加义务献血,要求男、女教师都有,则不同的选取方法数为__________.(结果用数值表示)15.已知平面,过空间一定点P作一直线l,使得直线l与平面,所成的角都是30°,则这样的直线l有______条16.已知双曲线C:的两焦点分别为,,P为双曲线C上一点,若,则=___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线上一点到其焦点F的距离为2.(1)求拋物线方程;(2)直线与拋物线相交于两点,求的长.18.(12分)已知椭圆经过点,椭圆E的一个焦点为.(1)求椭圆E的方程;(2)若直线l过点且与椭圆E交于两点.求的最大值.19.(12分)如图,四棱锥中,平面、底面为菱形,为的中点.(1)证明:平面;(2)设,菱形的面积为,求二面角的余弦值.20.(12分)奋发学习小组共有3名学生,在某次探究活动中,他们每人上交了1份作业,现各自从这3份作业中随机地取出了一份作业.(1)每个学生恰好取到自己作业的概率是多少?(2)每个学生不都取到自己作业的概率是多少?(3)每个学生取到的都不是自己作业的概率是多少?21.(12分)2021年7月29日,中国游泳队获得了女子米自由泳接力决赛冠军并打破世界纪录.受奥运精神的鼓舞,某游泳俱乐部组织100名游泳爱好者进行自由泳1500米测试,并记录他们的时间(单位:分钟),将所得数据分成5组:,,,,,整理得到如图所示的频率分布直方图.(1)求出直方图中m的值;(2)利用样本估计总体的思想,估计这100位游泳爱好者1500米自由泳测试时间的平均数和中位数(同一组中的数据用该组区间中点值作代表).22.(10分)在正方体中,E,F分别是,的中点(1)求证:∥平面;(2)求平面与平面EDC所成的二面角的正弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分别由矩形面积公式与微积分几何意义计算阴影部分和矩形部分的面积,最后由几何概型概率计算公式计算即可.【详解】由已知,矩形的面积为4,阴影部分的面积为,由几何概型公式可得此点取自阴影部分的概率等于,故选:A2、C【解析】根据椭圆的标准方程求出,进而得出短轴长.【详解】由,可得,所以短轴长为.故选:C.3、C【解析】观察规律可知,从第一行起,每一行最后一个数是连续的完全平方数,据此容易得出答案.【详解】由图中数字排列规律可知:第1行从左往右最后1个数是,第2行从左往右最后1个数是,第3行从左往右最后1个数是,……第18行从左往右最后1个数为,第19行从左往右第5个数是故选:C.4、B【解析】根据特称命题的否定变换形式即可得出结果【详解】命题:,,则命题的否定为,故选:B5、C【解析】求出圆心到直线的距离,再利用,化简求值,即可得到答案.【详解】圆的圆心为,圆心到直线的距离公式为,故故选:C.6、D【解析】由抛物线准线与圆相切,结合抛物线方程,令求切线方程且抛物线准线方程为,即可求参数p.【详解】圆的标准方程为:,故当时,有或,所以或,得或6故选:D7、B【解析】利用直线的方向向量求出其斜率,进而求出倾斜角作答.【详解】因直线的方向向量为,则直线l的斜率,直线l的倾斜角,于是得,解得,所以直线l的倾斜角为.故选:B8、B【解析】根据平均数、标准差、中位数及众数的概念即得.【详解】根据平均数、中位数、众数的概念可知,平均数、中位数、众数描述数据的集中趋势,标准差描述数据的波动大小估计数据的稳定程度.故选:B.9、B【解析】列举出循环的每一步,利用裂项相消法可求得输出结果.【详解】第一次循环,不成立,,;第二次循环,不成立,,;第三次循环,不成立,,;以此类推,最后一次循环,不成立,,.成立,跳出循环体,输出.故选:B.10、C【解析】先根据频率分布直方图中频率之和为计算出数据位于的频率,再利用频率分布直方图中求中位数的原则求出中位数【详解】在频率分布直方图中,所有矩形面积之和为,所以,数据位于的频率为,前两个矩形的面积之和为,前三个矩形的面积之和为,所以,中位数位于区间,设中位数为,则有,解得(岁),故选C【点睛】本题考查频率分布直方图的性质和频率分布直方图中中位数的计算,计算时要充分利用频率分布直方图中中位数的计算原理来计算,考查计算能力,属于中等题11、B【解析】根据曲线方程,结合充分、必要性的定义判断题设条件间的关系.【详解】由,若,则表示一个圆,充分性不成立;而表示一个椭圆,则成立,必要性成立.所以是的必要不充分条件.故选:B12、D【解析】函数|在[–2,2]上是偶函数,其图象关于轴对称,因为,所以排除选项;当时,有一零点,设为,当时,为减函数,当时,为增函数故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、①.1.6;②.3.65.【解析】根据给定数表求出样本中心点,代入即可求得,取可求出该年进口总额.详解】由数表得:,,因此,回归直线过点,由,解得,此时,,当时,即,解得,所以,预计该年进口总额为千亿元.故答案为:1.6;3.6514、18【解析】由题设,选取方式有两男教师一女教师或两女教师一男教师,应用组合数求出选取方法数.【详解】选取方式有:选两男教师一女教师或选两女教师一男教师,∴不同的选取方法有:种.故答案为:18.15、4【解析】设平面,在平面内作于点O,在平面内过点O作,设OM是的角平分线,过棱m上一点P作,则过点O在平面OMQP上存在2条直线l,使得直线l与OB、OA成,直线l与平面且与平面,所成的角都是30°,在的补角一侧也存在2条满足条件的直线l,由此可得答案.【详解】解:设平面,在平面内作于点O,在平面内过点O作,因为平面,所以,设OM是的角平分线,则,过棱m上一点P作,则过点O在平面OMQP上存在2条直线l,使得直线l与OB、OA成,此时直线l与平面且与平面,所成的角都是30°,同理,在的补角一侧也存在2条满足条件的直线l,所以这样的直线l有4条,故答案为:4.16、18或2##2或18【解析】先由双曲线的方程求出,再利用双曲线的定义列方程求解即可【详解】由,得,则,因为双曲线C:的两焦点分别为,,P为双曲线C上一点,所以,即,所以或,因为,所以或都符合题意,故答案为:18或2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据抛物线焦半径公式即可得解;(2)联立方程组求出交点坐标,即可得到弦长.【小问1详解】由题:抛物线上一点到其焦点F的距离为2,即,所以抛物线方程:【小问2详解】联立直线和得,解得,,18、(1)(2)【解析】(1)设椭圆的左,右焦点分别为,.利用椭圆的定义求出,然后求解,得到椭圆方程;(2)当直线的斜率存在时,设,,,,,联立直线与椭圆方程,利用韦达定理以及弦长公式得到弦长的表达式,再通过换元利用二次函数的性质求解最值即可【小问1详解】依题意,设椭圆的左,右焦点分别为,则,,,,椭圆的方程为【小问2详解】当直线的斜率存在时,设,,,,由得由得由,得设,则,当直线的斜率不存在时,,的最大值为19、(1)证明见解析;(2).【解析】(1)连接交于点,连接,则,利用线面平行的判定定理,即可得证;(2)根据题意,求得菱形的边长,取中点,可证,如图建系,求得点坐标及坐标,即可求得平面的法向量,根据平面PAD,可求得面的法向量,利用空间向量的夹角公式,即可求得答案.【详解】(1)连接交于点,连接,则、E分别为、的中点,所以,又平面平面所以平面(2)由菱形的面积为,,易得菱形边长为,取中点,连接,因为,所以,以点为原点,以方向为轴,方向为轴,方向为轴,建立如图所示坐标系.则所以设平面的法向量,由得,令,则所以一个法向量,因为,,所以平面PAD,所以平面的一个法向量所以,又二面角为锐二面角,所以二面角的余弦值为【点睛】解题的关键是熟练掌握证明平行的定理,证明线面平行时,常用中位线法和平行四边形法来证明;利用空间向量求解二面角为常考题型,步骤为建系、求点坐标、求所需向量坐标、求法向量、利用夹角公式求解,属基础题.20、(1)(2)(3)【解析】(1)根据列举法列出所有的可能基本事件,进而得出每个学生恰好拿到自己作业的概率;(2)利用对立事件的概念即可求得结果;(3)结合(1)即可得出每个学生拿的都不是自己作业的事件数.【小问1详解】设这三个学生分别为A、B、C,A的作业为a,B的作业为b,C的作业为c,则基本事件为:,则基本事件总数为6,设每个学生恰好拿到自己作业为事件E,事件E包含的事件数为l,所以;小问2详解】设每个学生不都拿到自己作业为事件F,因为事件F的对立事件为E,所以;【小问3详解】设每个学生拿的都不是自己作业为事件G,事件G包含的事件数为2,.21、(1)(2),【解析】(1)利用频率之和也即各矩形的面积和为1即可求解.(2)利用平均数和中位数的计算方法求解即可.【小问1详解】由,可得.【小问2详解】平均数为:,设中位数为,则,解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宜兴电工证考试题库及答案
- 20263M(中国)校招面试题及答案
- 传感器刘换成试题及答案
- 未来五年传输线-天线分析仪企业ESG实践与创新战略分析研究报告
- 三台县2025年县级事业单位面向县内乡镇公开选调工作人员(16人)备考题库必考题
- 北京中国石油大学教育基金会招聘2人参考题库附答案
- 南昌市建设投资集团有限公司公开招聘【20人】参考题库必考题
- 山东高速集团有限公司2025年下半年社会招聘(162人) 备考题库必考题
- 招23人!高中可报、2025年茫崖市公安局面向社会公开招聘警务辅助人员备考题库附答案
- 盐亭县2025年教体系统面向县外公开考调事业单位工作人员的考试备考题库附答案
- 绍兴金牡印染有限公司年产12500吨针织布、6800万米梭织布高档印染面料升级技改项目环境影响报告
- 成人呼吸支持治疗器械相关压力性损伤的预防
- DHA乳状液制备工艺优化及氧化稳定性的研究
- 2023年江苏省五年制专转本英语统考真题(试卷+答案)
- 三星-SHS-P718-指纹锁使用说明书
- 岳麓书社版高中历史必修三3.13《挑战教皇的权威》课件(共28张PPT)
- GC/T 1201-2022国家物资储备通用术语
- 污水管网监理规划
- GB/T 6730.65-2009铁矿石全铁含量的测定三氯化钛还原重铬酸钾滴定法(常规方法)
- GB/T 35273-2020信息安全技术个人信息安全规范
- 《看图猜成语》课件
评论
0/150
提交评论