河北省邯郸市大名县第一中学2026届数学高一上期末监测试题含解析_第1页
河北省邯郸市大名县第一中学2026届数学高一上期末监测试题含解析_第2页
河北省邯郸市大名县第一中学2026届数学高一上期末监测试题含解析_第3页
河北省邯郸市大名县第一中学2026届数学高一上期末监测试题含解析_第4页
河北省邯郸市大名县第一中学2026届数学高一上期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省邯郸市大名县第一中学2026届数学高一上期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则等于()A. B.C. D.2.“不等式在上恒成立”的一个必要不充分条件是()A. B.C. D.3.已知角α的终边过点P(4,-3),则sinα+cosα的值是()A B.C. D.4.已知函数,则下列结论不正确的是()A. B.是的一个周期C.的图象关于点对称 D.的定义域是5.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为()A. B.C. D.6.设若,,,则()A. B.C. D.7.已知平面α和直线l,则α内至少有一条直线与l()A.异面 B.相交C.平行 D.垂直8.一个几何体的三视图如图所示,则该几何体的表面积为A. B.C. D.9.直线的倾斜角是()A.30° B.60°C.120° D.150°10.下列函数中,既是偶函数又在单调递增的函数是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若集合有且仅有两个不同的子集,则实数=_______;12.函数的部分图象如图所示.则函数的解析式为______13.已知函数,,其中表示不超过x的最大整数.例如:,,.①______;②若对任意都成立,则实数m的取值范围是______14.若是幂函数且在单调递增,则实数_______.15.如图,扇环ABCD中,弧,弧,,则扇环ABCD的面积__________16.已知,,且,若不等式恒成立,则实数m的取值范围为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是偶函数(1)求实数的值(2)设,若函数与的图象有且只有一个公共点,求实数的取值范围18.已知函数(1)利用函数单调性的定义证明是单调递增函数;(2)若对任意,恒成立,求实数取值范围19.已知函数,其中.(1)若对任意实数,恒有,求的取值范围;(2)是否存在实数,使得且?若存在,则求的取值范围;若不存在,则加以证明.20.已知.(1)求及;(2)若,,求的值.21.如图,在直三棱柱ABC-A1B1C1中,D、E分别为AB、BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线A1C1∥平面B1DE;(2)平面A1B1BA⊥平面A1C1F.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用换元法设,则,然后利用三角函数的诱导公式进行化简求解即可【详解】设,则,则,则,故选:2、C【解析】先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可.【详解】因为“不等式在上恒成立”,所以当时,原不等式为在上不是恒成立的,所以,所以“不等式在上恒成立”,等价于,解得.A选项是充要条件,不成立;B选项中,不可推导出,B不成立;C选项中,可推导,且不可推导,故是的必要不充分条件,正确;D选项中,可推导,且不可推导,故是的充分不必要条件,D不正确.故选:C.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含3、A【解析】由三角函数的定义可求得sinα与cosα,从而可得sinα+cosα的值【详解】∵知角α的终边经过点P(4,-3),∴sinα,cosα,∴sinα+cosα故选:A4、C【解析】画出函数的图象,观察图象可解答.【详解】画出函数的图象,易得的周期为,且是偶函数,定义域是,故A,B,D正确;点不是函数的对称中心,C错误.故选:C5、D【解析】答案:D左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案6、A【解析】将分别与比较大小,即可判断得三者的大小关系.【详解】因为,,,所以可得的大小关系为.故选:A7、D【解析】若直线l∥α,α内至少有一条直线与l垂直,当l与α相交时,α内至少有一条直线与l垂直当l⊂α,α内至少有一条直线与l垂直故选D8、D【解析】该几何体为半圆柱,底面为半径为1的半圆,高为2,因此表面积为,选D.9、C【解析】设直线的倾斜角为,得到,即可求解,得到答案.【详解】设直线的倾斜角为,又由直线,可得直线的斜率为,所以,又由,解得,即直线的倾斜角为,故选:C【点睛】本题主要考查了直线的斜率与倾斜角的关系,以及直线方程的应用,其中解答中熟记直线的斜率和直线的倾斜角的关系是解答的关键,着重考查了推理与运算能力,属于基础题.10、B【解析】由奇偶性排除,再由增减性可选出正确答案.【详解】项为奇函数,项为非奇非偶函数函数,为偶函数,项中,在单减,项中,在单调递增.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、或.【解析】根据集合的子集个数确定出方程解的情况,由此求解出参数值.【详解】因为集合仅有两个不同子集,所以集合中仅有个元素,当时,,所以,满足要求;当时,,所以,此时方程解为,即,满足要求,所以或,故答案:或.12、【解析】由图象可得出函数的最小正周期,可求得的值,再由结合的取值范围可求得的值,即可得出函数的解析式.【详解】函数的最小正周期为,则,则,因为且函数在处附近单调递减,则,得,因,所以.所以故答案为:.13、①.②.【解析】①代入,由函数的定义计算可得答案;②分别计算时,时,时,时,时,时,时,的值,建立不等式,求解即可【详解】解:①∵,∴②当时,;当时,;当时,;当时,;当时,;当时,;当时,又对任意都成立,即恒成立,∴,∴,∴实数m的取值范围是故答案为:;.【点睛】关键点睛:本题考查函数的新定义,关键在于理解函数的定义,分段求值,建立不等式求解.14、2【解析】由幂函数可得,解得或2,检验函数单调性求解即可.【详解】为幂函数,所以,解得或2.当时,,在不单调递增,舍去;当时,,在单调递增成立.故答案为.【点睛】本题主要考查了幂函数的定义及单调性,属于基础题.15、3【解析】根据弧长公式求出,,再由根据扇形的面积公式求解即可.【详解】设,因为弧,弧,,所以,,所以,,又扇形的面积为,扇形的面积为,所以扇环ABCD的面积故答案为:316、【解析】由基本不等式求得的最小值,解不等式可得的范围【详解】∵,,,,∴,当且仅当,即时等号成立,∴的最小值为8,由解得,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据是偶函数,由成立求解;(2)函数与图象有且只有一个公共点,即方程有且只有一个根,令,转化为方程有且只有一个正根求解.【小问1详解】解:函数,因为是偶函数,所以,即,即对一切恒成立,所以;【小问2详解】因为函数与的图象有且只有一个公共点,所以方程有且只有一个根,即方程有且只有一个根,令,则方程有且只有一个正根,当时,解得,不合题意;当时,开口向上,且过定点,符合题意,当时,,解得,综上:实数的取值范围是.18、(1)证明见解析(2)【解析】(1)利用单调性的定义,取值、作差、整理、定号、得结论,即可得证.(2)令,根据x的范围,可得t的范围,原式等价为,,只需即可,分别讨论、和三种情况,根据二次函数的性质,计算求值,分析即可得答案.【小问1详解】由已知可得的定义域为,任取,且,则,因为,,,所以,即,所以在上是单调递增函数【小问2详解】,令,则当时,,所以令,,则只需当,即时,在上单调递增,所以,解得,与矛盾,舍去;当,即时,在上单调递减,在上单调递增,所以,解得;当即时,在上单调递减,所以,解得,与矛盾,舍去综上,实数的取值范围是19、(1);(2)存在,.【解析】(1)首先求出在上的最大值,问题转化为对任意成立,然后化简不等式,参变分离构造即可.(2)分a>0和a<0两种情况讨论,去掉绝对值符号,转化为解不等式的问题.【小问1详解】,,,∴,∴原问题对任意成立,即对任意成立,即对任意成立,∴.故a的范围是:.【小问2详解】①,,∵,∴,∴不等式变为,∴;(2),,∵,∴此时无解.综上所述,存在满足题意.20、(1),;(2).【解析】(1)应用二倍角正切公式求,由和角正切公式求.(2)根据已知角的范围及函数值,结合同角三角函数的平方关系求,,进而应用和角正弦公式求.【小问1详解】,.【小问2详解】,.,..21、证明过程详见解析【解析】(1)先证明DE∥A1C1,即证直线A1C1∥平面B1DE.(2)先证明DE⊥平面AA1B1B,再证明A1F⊥平面B1DE,即证平面AA1B1B⊥平面A1C1F.【详解】证明:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC-A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵DE⊂平面B1DE,且A1C1⊄平面B1DE,∴A1C1∥平面B1DE;(2)在ABC-A1B1C1的直棱柱中,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论