版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届西南名校高一数学第一学期期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.命题“,使.”的否定形式是()A.“,使” B.“,使”C.“,使” D.“,使”2.铁路总公司关于乘车行李规定如下:乘坐动车组列车携带品的外部尺寸长、宽、高之和不超过.设携带品外部尺寸长、宽、高分别为(单位:),这个规定用数学关系式表示为()A. B.C. D.3.函数满足:为偶函数:在上为增函数若,且,则与的大小关系是A. B.C. D.不能确定4.点从点出发,按逆时针方向沿周长为的平面图形运动一周,,两点连线的距离与点走过的路程的函数关系如图所示,则点所走的图形可能是A. B.C. D.5.有位同学家开了个小卖部,他为了研究气温对热饮销售的影响,经过统计得到一天所卖的热饮杯数(y)与当天气温(x℃)之间的线性关系,其回归方程为=-2.35x+147.77.如果某天气温为2℃,则该小卖部大约能卖出热饮的杯数是A.140 B.143C.152 D.1566.一个容量为1000的样本分成若干组,已知某组的频率为0.4,则该组的频数是A.400 B.40C.4 D.6007.给定已知函数.若动直线y=m与函数的图象有3个交点,则实数m的取值范围为A. B.C. D.8.函数的图像可能是()A. B.C. D.9.若m,n表示两条不同直线,α表示平面,则下列命题中真命题是()A.若,,则 B.若,,则C.若,,则 D.若,,则10.已知m,n表示两条不同直线,表示平面,下列说法正确的是A.若则 B.若,,则C.若,,则 D.若,,则二、填空题:本大题共6小题,每小题5分,共30分。11.若,,.,则a,b,c的大小关系用“”表示为________________.12.已知,则___________13.已知,,,则________14.设函数,若关于x方程有且仅有6个不同的实根.则实数a的取值范围是_______.15.若函数在区间上有两个不同的零点,则实数a的取值范围是_________.16.若“”为假命题,则实数m最小值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,底面,,,,,是中点(Ⅰ)证明:平面;(Ⅱ)求二面角的正弦值18.已知集合,.(1)若,求;(2)若,求实数的取值范围.19.已知函数f(x)=4cos(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在区间-π620.设A是实数集的非空子集,称集合且为集合A的生成集(1)当时,写出集合A的生成集B;(2)若A是由5个正实数构成的集合,求其生成集B中元素个数的最小值;(3)判断是否存在4个正实数构成的集合A,使其生成集,并说明理由21.已知函数其中,求:函数的最小正周期和单调递减区间;函数图象的对称轴
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据特称命题的否定是全称命题,即可得出命题的否定形式【详解】因为特称命题的否定是全称命题,所以命题“,使”的否定形式为:,使故选:D2、C【解析】根据长、宽、高的和不超过可直接得到关系式.【详解】长、宽、高之和不超过,.故选:.3、A【解析】根据题意,由为偶函数可得函数的对称轴为,进而结合函数的单调性可得上为减函数,结合,且分析可得,据此分析可得答案【详解】根据题意,函数满足为偶函数,则函数的对称轴为,则有,又由在上为增函数,则在上为减函数,若,则,又由,则,则有,又由,则,故选A【点睛】本题考查函数的单调性与奇偶性的综合应用,涉及函数的对称性,属于中档题4、C【解析】认真观察函数图像,根据运动特点,采用排除法解决.【详解】由函数关系式可知当点P运动到图形周长一半时O,P两点连线的距离最大,可以排除选项A,D,对选项B正方形的图像关于对角线对称,所以距离与点走过的路程的函数图像应该关于对称,由图可知不满足题意故排除选项B,故选C【点睛】本题考查函数图象的识别和判断,考查对于运动问题的深刻理解,解题关键是认真分析函数图象的特点.考查学生分析问题的能力5、B【解析】一个热饮杯数与当天气温之际的线性关系,其回归方程某天气温为时,即则该小卖部大约能卖出热饮的杯数是故选点睛:本题主要考查的知识点是线性回归方程的应用,即根据所给的或者是做出的线性回归方程,预报的值,这是一些解答题6、A【解析】频数为考点:频率频数的关系7、B【解析】画出函数的图像以及直线y=k的图像,根据条件和图像求得k的范围。【详解】设,由题可知,当,即或时,;当,即时,,因为,故当时,,当时,,做出函数的图像如图所示,直线y=m与函数有3个交点,可得k的范围为(4,5).故选:B【点睛】本题考查函数图像与直线有交点问题,先分别求出各段函数的解析式,再利用数形结合的方法得到参数的取值范围。8、D【解析】∵,∴,∴函数需向下平移个单位,不过(0,1)点,所以排除A,当时,∴,所以排除B,当时,∴,所以排除C,故选D.考点:函数图象的平移.9、A【解析】对于A,因为垂直于同一平面的两条直线相互平行,故A正确;对于B,如果一条直线平行于一个平面,那么平行于已知直线的直线与该平面的位置关系有平行或在平面内,故B错;对于C,因同平行于一个平面的两条直线异面、相交或平行,故C错;对于D,与一个平面的平行直线垂直的直线与已知平面是平行、相交或在面内,故D错,选A.10、B【解析】线面垂直,则有该直线和平面内所有的直线都垂直,故B正确.考点:空间点线面位置关系二、填空题:本大题共6小题,每小题5分,共30分。11、cab【解析】根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,从而可得结果【详解】,即;,即;,即,综上可得,故答案为:.【点睛】方法点睛:解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.12、【解析】根据同角三角函数的关系求得,再运用正弦、余弦的二倍角公式求得,由正弦和角公式可求得答案.【详解】解:因为,所以,所以,所以.故答案为:.13、【解析】由诱导公式将化为,再由,根据两角差的正弦公式,即可求出结果.【详解】因,所以,,又,,所以,,所以,,所以.故答案为【点睛】本题主要考查简单的三角恒等变换,熟记两角差的正弦公式以及诱导公式,即可求解,属于常考题型.14、或或【解析】作出函数的图象,设,分关于有两个不同的实数根、,和两相等实数根进行讨论,当方程有两个相等的实数根时,再检验,当方程有两个不同的实数根、时,或,再由二次方程实数根的分布进行讨论求解即可.【详解】作出函数的简图如图,令,要使关于的方程有且仅有个不同的实根,(1)当方程有两个相等的实数根时,由,即,此时当,此时,此时由图可知方程有4个实数根,此时不满足.当,此时,此时由图可知方程有6个实数根,此时满足条件(2)当方程有两个不同的实数根、时,则或当时,由可得则的根为由图可知当时,方程有2个实数根当时,方程有4个实数根,此时满足条件.当时,设由,则,即综上所述:满足条件的实数a的取值范围是或或故答案为:或或【点睛】关键点睛:本题考查利用复合型二次函数的零点个数求参数,考查数形结合思想的应用,解答本题的关键由条件结合函数的图象,分析方程的根情况及其范围,再由二次方程实数根的分布解决问题,属于难题.15、【解析】首先根据函数的解析式确定,再利用换元法将函数在区间上有两个不同的零点的问题,转化为方程区间上有两个不同根的问题,由此列出不等式组解得答案.【详解】函数在区间上有两个不同的零点,则,故由可知:,当时,,显然不符合题意,故,又函数在区间上有两个不同的零点,等价于在区间上有两个不同的根,设,则函数在区间上有两个不同的根,等价于在区间上有两个不同的根,由得,要使区间上有两个不同的根,需满足a2-5a+1>06a故答案为:16、【解析】写出该命题的否定命题,根据否定命题求出的取值范围即可【详解】解:命题“,有”是假命题,它否定命题是“,有”,是真命题,即,恒成立,所以,因为,在上单调递减,上单调递增,又,,所以所以,的最小值为,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】(1)通过和得到平面,利用等腰三角形的性质可得,可得结论;(2)过点作,垂足为,连接,证得是二面角的平面角,在中先求出,然后在中求出结论.试题解析:(1)证明:在四棱锥中,因底面,平面,故.由条件,,∴平面.又平面,∴.由,,可得.∵是的中点,∴.又,综上得平面.(2)过点作,垂足为,连接,由(1)知,平面,在平面内的射影是,则因此是二面角的平面角由已知,可得.设,可得,,,在中,∵,∴,则,在中,.18、(1);(2).【解析】(1)根据并集的概念运算可得结果;(2)分类讨论集合是否为空集,根据交集结果列式可得答案.【详解】(1)当时,,所以.(2)因为,(i)当,即时,,符合题意;(ii)当时,,解得或.综上所述,实数的取值范围是.【点睛】易错点点睛:容易漏掉集合为空集的情况.19、(Ⅰ)(Ⅱ)2,-1【解析】(Ⅰ)因为f=4=3故fx最小正周期为(Ⅱ)因为-π6≤x≤于是,当2x+π6=π2,即x=当2x+π6=-π6,即点睛:本题主要考查了两角和的正弦公式,辅助角公式,正弦函数的性质,熟练掌握公式是解答本题的关键.20、(1)(2)7(3)不存在,理由见解析【解析】(1)利用集合的生成集定义直接求解.(2)设,且,利用生成集的定义即可求解;(3)不存在,理由反证法说明.【小问1详解】,【小问2详解】设,不妨设,因为,所以中元素个数大于等于7个,又,,此时中元素个数大于等于7个,所以生成集B中元素个数的最小值为7.【小问3详解】不存在,理由如下:假设存在4个正实数构成的集合,使其生成集,不妨设,则集合A的生成集则必有,其4个正实数的乘积;也有,其4个正实数乘积,矛盾;所以假设不成立,故不存在4个正实数构成的集合A,使其生成集【点睛】关键点点睛:本题考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年护士执业资格考试《实践能力》考试试题库(核心板)答案解析
- 未来五年环境污染治理服务企业ESG实践与创新战略分析研究报告
- 未来五年海参企业数字化转型与智慧升级战略分析研究报告
- 宜春市2025年度市直事业单位公开选调工作人员【22人】参考题库附答案
- 景德镇市公安局2025年下半年招聘警务辅助人员体能测评备考题库附答案
- 自贡市自流井区人力资源和社会保障局2025年下半年自流井区事业单位公开选调工作人员的(17人)参考题库必考题
- 赣州市总工会2025年度公开招聘工会社会工作者【14人】参考题库附答案
- 安全巡查工作记录讲解
- 2026重庆农商银行校招面试题及答案
- 2026年中国科学院长春光学精密机械与物理研究所动态成像室学术秘书招聘备考题库附答案
- 老年病康复训练治疗讲课件
- 2024中考会考模拟地理(福建)(含答案或解析)
- CJ/T 164-2014节水型生活用水器具
- 购销合同范本(塘渣)8篇
- 货车充电协议书范本
- 屋面光伏设计合同协议
- 生鲜业务采购合同协议
- 夫妻门卫合同协议
- 公司双选工作方案
- GB/T 4340.2-2025金属材料维氏硬度试验第2部分:硬度计的检验与校准
- 销售合同评审管理制度
评论
0/150
提交评论