版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江西省宜春市靖安中学数学高一上期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.每天,随着清晨第一缕阳光升起,北京天安门广场都会举行庄严肃穆的升旗仪式,每天升国旗的时间随着日出时间的改变而改变,下表给出了2020年1月至12月,每个月第一天北京天安门广场举行升旗礼的时间:1月2月3月4月5月6月7月8月9月10月11月12月7:367:236:485:595:154:484:495:125:416:106:427:16若据此以月份(x)为横轴、时间(y)为纵轴,画出散点图,并用曲线去拟合这些数据,则适合模拟的函数模型是()A. B.且a≠1)C. D.且a≠1)2.设,满足约束条件,且目标函数仅在点处取得最大值,则原点到直线的距离的取值范围是()A. B.C. D.3.设a>0,b>0,化简的结果是()A. B.C. D.-3a4.在试验“甲射击三次,观察中靶的情况”中,事件A表示随机事件“至少中靶1次”,事件B表示随机事件“正好中靶2次”,事件C表示随机事件“至多中靶2次”,事件D表示随机事件“全部脱靶”,则()A.A与C是互斥事件 B.B与C是互斥事件C.A与D是对立事件 D.B与D是对立事件5.若,,,则()A. B.C. D.6.为了得到函数图象,只需将函数的图象A.向左平行移动个单位 B.向左平行移动个单位C.向右平行移动个单位 D.向右平行移动个单位7.函数f(x)=ax(a>0,a≠1)对于任意的实数xA.f(xy)=f(x)f(y) B.f(x+y)=f(x)f(y)C.f(xy)=f(x)+f(y) D.f(x+y)=f(x)+f(y)8.如图,在直角梯形ABCD中,AB⊥BC,AD=DC=2,CB=,动点P从点A出发,由A→D→C→B沿边运动,点P在AB上的射影为Q.设点P运动的路程为x,△APQ的面积为y,则y=f(x)的图象大致是()A. B.C. D.9.已知角的顶点与原点重合,它的始边与轴的非负半轴重合,它的终边上一点坐标为,.则为()A. B.C. D.10.若角的终边上一点,则的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,若,则_______;若,则实数的取值范围是__________12.已知函数,,若关于x的方程()恰好有6个不同的实数根,则实数λ的取值范围为_______.13.若x,y∈(0,+∞),且x+4y=1,则的最小值为________.14.幂函数为偶函数且在区间上单调递减,则________,________.15.函数的值域是____________,单调递增区间是____________.16.函数的单调增区间为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,.(1)求;(2)若,,求,并计算.18.已知函数,其中m为实数(1)求f(x)的定义域;(2)当时,求f(x)的值域;(3)求f(x)的最小值19.某种商品在天内每克的销售价格(元)与时间的函数图象是如图所示的两条线段(不包含两点);该商品在30天内日销售量(克)与时间(天)之间的函数关系如下表所示:第天5152030销售量克35252010(1)根据提供的图象,写出该商品每克销售的价格(元)与时间的函数关系式;(2)根据表中数据写出一个反映日销售量随时间变化的函数关系式;(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的值.(注:日销售金额=每克的销售价格×日销售量)20.如图所示,是圆柱的母线,是圆柱底面圆的直径,是底面圆周上异于的任意一点,.(1)求证:;(2)求三棱锥体积的最大值,并写出此时三棱锥外接球的表面积.21.已知函数=的部分图象如图所示(1)求的值;(2)求的单调增区间;(3)求在区间上的最大值和最小值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】画出散点图,根据图形即可判断.【详解】画出散点图如下,则根据散点图可知,可用正弦型曲线拟合这些数据,故适合.故选:C.2、B【解析】作出可行域,由目标函数仅在点取最大值,分,,三种情况分类讨论,能求出实数的取值范围.然后求解到直线的距离的表达式,求解最值即可详解】解:由约束条件作出可行域,如右图可行域,目标函数仅在点取最大值,当时,仅在上取最大值,不成立;当时,目标函数的斜率,目标函数在取不到最大值当时,目标函数的斜率,小于直线的斜率,综上,原点到直线的距离则原点到直线的距离的取值范围是:故选B【点睛】本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意线性规划知识的合理运用.3、D【解析】由分数指数幂的运算性质可得结果.【详解】因为,,所以.故选:D.4、C【解析】根据互斥事件、对立事件的定义即可求解.【详解】解:因为A与C,B与C可能同时发生,故选项A、B不正确;B与D不可能同时发生,但B与D不是事件的所有结果,故选项D不正确;A与D不可能同时发生,且A与D为事件的所有结果,故选项C正确故选:C.5、A【解析】先变形,然后利用指数函数的性质比较大小即可【详解】,因为在上为减函数,且,所以,所以,故选:A6、B【解析】由函数y=Asin(ωx+φ)的图象变换规律,可得结论【详解】∵将函数y=sin(2x)的图象向左平行移动个单位得到sin[2(x)]=,∴要得到函数y=sin2x图象,只需将函数y=sin(2x)的图象向左平行移动个单位故选B【点睛】本题主要考查了函数y=Asin(ωx+φ)的图象变换规律的简单应用,属于基础题7、B【解析】由指数的运算性质得到ax+y【详解】解:由函数f(x)=a得f(x+y)=a所以函数f(x)=ax(a>0,a≠1)对于任意的实数x、y故选:B.【点睛】本题考查了指数的运算性质,是基础题.8、D【解析】结合P点的运动轨迹以及二次函数,三角形的面积公式判断即可【详解】解:P点在AD上时,△APQ是等腰直角三角形,此时f(x)=•x•x=x2,(0<x<2)是二次函数,排除A,B,P在DC上时,PQ不变,AQ增加,是递增的一次函数,排除C,故选D【点睛】本题考查了数形结合思想,考查二次函数以及三角形的面积问题,是一道基础题9、D【解析】根据正弦函数的定义可得选项.【详解】的终边上有一点,,.故选:D.10、B【解析】由三角函数的定义即可得到结果.【详解】∵角的终边上一点,∴,∴,故选:B【点睛】本题考查三角函数的定义,考查诱导公式及特殊角的三角函数值,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】先判断函数的奇偶性,由求解;再根据函数的单调性,由求解.【详解】因为的定义域为R,且,,所以是奇函数,又,则-2;因为在上是增函数,所以在上是增函数,又是R上的奇函数,所以在R上递增,且,所以由,得,即,所以,解得或,所以实数的取值范围是,故答案为:,12、【解析】令,则方程转化为,可知可能有个不同解,二次函数可能有个不同解,由恰好有6个不同的实数根,可得有2个不同的实数根,有3个不同的实数根,则,然后根据,,分3种情况讨论即可得答案.【详解】解:令,则方程转化为,画出的图象,如图可知可能有个不同解,二次函数可能有个不同解,因为恰好有6个不同的实数根,所以有2个不同的实数根,有3个不同的实数根,则,因为,解得,,解得,所以,,每个方程有且仅有两个不相等的实数解,所以由,可得,即,解得;由,可得,即,解得;由,可得,即,而在上恒成立,综上,实数λ的取值范围为.故答案为:.13、9【解析】由x+4y=1,结合目标式,将x+4y替换目标式中的“1”即可得到基本不等式的形式,进而求得它的最小值,注意等号成立的条件【详解】∵x,y∈(0,+∞)且x+4y=1∴当且仅当有时取等号∴的最小值为9故答案为:9【点睛】本题考查了基本不等式中“1”的代换,注意基本不等式使用条件“一正二定三相等”,属于简单题14、(1).或3(2).4【解析】根据题意可得:【详解】区间上单调递减,,或3,当或3时,都有,,.故答案为:或3;4.15、①.②.【解析】先求二次函数值域,再根据指数函数单调性求函数值域;根据二次函数单调性与指数函数单调性以及复合函数单调性法则求函数增区间.【详解】因为,所以,即函数的值域是因为单调递减,在(1,+)上单调递减,因此函数的单调递增区间是(1,+).【点睛】本题考查复合函数值域与单调性,考查基本分析求解能力.16、.【解析】结合定义域由复合函数的单调性可解得结果.【详解】由得定义域为,令,则在单调递减,又在单调递减,所以的单调递增区间是.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2),【解析】(1)利用同角三角函数的关系可得.(2)将写成,再用两角差的余弦求解;由可求,先化简再代入求解.【小问1详解】,且,解得,,所以.【小问2详解】因,,所以,所以,所以.因为,,所以,,所以.18、(1)(2)[2,2](3)当时,f(x)的最小值为2;当时,f(x)的最小值为【解析】(1)根据函数解析式列出相应的不等式组,即可求得函数定义域;(2)令,采用两边平方的方法,即可求得答案;(3)仿(2),令,可得,从而将变为关于t的二次函数,然后根据在给定区间上的二次函数的最值问题求解方法,分类讨论求得答案.【小问1详解】由解得所以f(x)的定义域为【小问2详解】当时,设,则当时,取得最大值8;当或时,取得最小值4所以的取值范围是[4,8]所以f(x)的值城为[2,2]【小问3详解】设,由(2)知,,且,则令,,若,,此时的最小值为;若,当时,在[2,2上单调递增,此时的最小值为;当,即时,,此时的最小值为;当,即时,,此时的最小值为所以,当时,f(x)的最小值为2;当时,f(x)的最小值为19、(1);(2);(3)25.【解析】(1)设AB所在的直线方程为P=kt+20,将B点代入可得k值,由CD两点坐标可得直线CD所在的两点式方程,进而可得销售价格P(元)与时间t的分段函数关系式(2)设Q=k1t+b,把两点(5,35),(15,25)的坐标代入,可得日销售量Q随时间t变化的函数的解析式(3)设日销售金额为y,根据销售金额=销售价格×日销售量,结合(1)(2)的结论得到答案【详解】(1)由图可知,,,,设所在直线方程为,把代入得,所以.,由两点式得所在的直线方程为,整理得,,,所以,(2)由题意,设,把两点,代入得,解得所以把点,代入也适合,即对应的四点都在同一条直线上,所以.(本题若把四点中的任意两点代入中求出,,再验证也可以)(3)设日销售金额为,依题意得,当时,配方整理得,当时,在区间上的最大值为900当时,,配方整理得,所以当时,在区间上的最大值为1125.综上可知日销售金额最大值为1125元,此时.【点睛】本小题主要考查具体的函数模型在实际问题中的应用,考查数形结合、化归转化的数学思想方法,以及应用意识和运算求解能力20、(1)见解析;(2).【解析】(1)由圆柱易知平面,所以,由圆的性质易得,进而可证平面;(2)由已知得三棱锥的高,当直角的面积最大时,三棱锥的体积最大,当点在弧中点时最大,此时外接球的直径即可得解.试题解析:(1)证明:∵已知是圆柱的母线,.∴平面∵是圆柱底面圆的直径,是底面圆周上异于的任意一点,∴,又,∴平面又平面(2)解:由已知得三棱锥的高,当直角的面积最大时,三棱锥的体积最大,当点在弧中点时最大,,结合(1)可得三棱锥的外接球的直径即为,所以此时外接球的直径..点睛:一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 招26人!海北州公安局2025年度面向社会公开招聘警务辅助人员考试备考题库必考题
- 2026南平市公安局莒口派出所招聘2人备考题库附答案
- 2025广东清远市阳山县总工会招聘社会化工会工作者9人备考题库附答案
- 北京朝阳区六里屯街道办事处招聘18名城市协管员考试备考题库附答案
- 2025年白朗县事业单位考试真题
- 2025年同江市国企考试真题
- 2026上半年云南事业单位联考省科学技术厅直属事业单位招聘8人备考题库及参考答案详解1套
- 工业互联网安全防护2025年工业大数据应用可行性研究
- AI图像识别技术在大学化学合成实验中的实时监控课题报告教学研究课题报告
- 有限空间气体检测管理制度
- 江苏省盐城市大丰区四校联考2025-2026学年七年级上学期12月月考历史试卷(含答案)
- 事业编退休报告申请书
- 原发性骨髓纤维化2026
- 半导体厂务项目工程管理 课件 项目6 净化室系统的设计与维护
- 河南省洛阳强基联盟2025-2026学年高二上学期1月月考英语试题含答案
- 2026年中考数学模拟试卷试题汇编-尺规作图
- 文化IP授权使用框架协议
- 玻璃钢水箱安装详细技术方案
- 山东省烟台市开发区2024-2025学年上学期期末八年级数学检测题(含答案)
- 桂花香包制作课件
- 社会工作本科毕业论文
评论
0/150
提交评论