黑龙江省哈尔滨市尚志中学2026届数学高二上期末达标检测试题含解析_第1页
黑龙江省哈尔滨市尚志中学2026届数学高二上期末达标检测试题含解析_第2页
黑龙江省哈尔滨市尚志中学2026届数学高二上期末达标检测试题含解析_第3页
黑龙江省哈尔滨市尚志中学2026届数学高二上期末达标检测试题含解析_第4页
黑龙江省哈尔滨市尚志中学2026届数学高二上期末达标检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨市尚志中学2026届数学高二上期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线与平行,则实数m等于()A.0 B.1C.4 D.0或42.如图所示,某空间几何体的三视图是3个全等的等腰直角三角形,且直角边长为2,则该空间几何体的体积为()A. B.C. D.3.已知双曲线上的点到的距离为15,则点到点的距离为()A.7 B.23C.5或25 D.7或234.由直线上的点向圆引切线,则切线长的最小值为()A. B.C.4 D.25.直线的倾斜角为()A.1 B.-1C. D.6.在数列中,,,,则()A.2 B.C. D.17.为了更好地解决就业问题,国家在2020年提出了“地摊经济”为响应国家号召,有不少地区出台了相关政策去鼓励“地摊经济”.某摊主2020年4月初向银行借了免息贷款8000元,用于进货,因质优价廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费800元,余款作为资金全部用于下月再进货,如此继续,预计到2021年3月底该摊主的年所得收入为()(取,)A.24000元 B.26000元C.30000元 D.32000元8.若,则()A.22 B.19C.-20 D.-199.命题“,均有”的否定为()A.,均有 B.,使得C.,使得 D.,均有10.若关于x的不等式的解集为,则关于x的不等式的解集是()A. B.,或C.,或 D.,或,或11.直线,若的倾斜角为60°,则的斜率为()A. B.C. D.12.已知,且,则的最大值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图①,用一个平面去截圆锥,得到的截口曲线是椭圆.许多人从纯几何的角度出发对这个问题进行过研究,其中比利时数学家(1794-1847)的方法非常巧妙,极具创造性.在圆锥内放两个大小不同的球,使得它们分别与圆锥的侧面,截面相切,两个球分别与截面相切于,在截口曲线上任取一点,过作圆锥的母线,分别与两个球相切于,由球和圆的几何性质,可以知道,,于是.由的产生方法可知,它们之间的距离是定值,由椭圆定义可知,截口曲线是以为焦点的椭圆.如图②,一个半径为2的球放在桌面上,桌面上方有一个点光源,则球在桌面上的投影是椭圆.已知是椭圆的长轴,垂直于桌面且与球相切,,则椭圆的离心率为___________.14.已知曲线在点处的切线方程是,则的值为______15.如图,设正方形ABCD与正方形ABEF的边长都为1,若平面ABCD,则异面直线AC与BF所成角的大小为______16.一条直线经过,并且倾斜角是直线的倾斜角的2倍,则直线的方程为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆经过点和,且圆心在直线上.(1)求圆的方程;(2)过原点的直线与圆交于M,N两点,若的面积为,求直线的方程.18.(12分)已知等比数列的前n项和为,,(1)求数列的通项公式;(2)在与之间插入n个数,使这个数组成一个等差数列,记插入的这n个数之和为,求数列的前n项和19.(12分)如图,在三棱锥中,,点为线段上的点.(1)若平面,试确定点的位置,并说明理由;(2)若,,,在(1)成立的前提下,求二面角的余弦值.20.(12分)如图,在棱长为的正方体中,为中点(1)求二面角的大小;(2)探究线段上是否存在点,使得平面?若存在,确定点的位置;若不存在,说明理由21.(12分)已知圆与直线(1)若,直线与圆相交与,求弦长(2)若直线与圆无公共点求的取值范围22.(10分)在数列中,,且.(1)证明;数列是等比数列.(2)若,求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由两条直线平行的充要条件即可求解.【详解】解:因为直线与平行,所以,解得,故选:A.2、A【解析】在该空间几何体的直观图中去求其体积即可.【详解】依托棱长为2的正方体得到该空间几何体的直观图为三棱锥则故选:A3、D【解析】根据双曲线的定义知,,即可求解.【详解】由题意,双曲线,可得焦点坐标,根据双曲线的定义知,,而,所以或故选:D【点睛】本题主要考查了双曲线的定义及其应用,其中解答中熟记双曲线的定义,列出方程是解答的关键,着重考查推理与运算能力,属于基础题.4、D【解析】切点与圆心的连线垂直于切线,切线长转化为直线上点与圆心连线和半径的关系,利用点到直线的距离公式求出圆心与直线上点距离的最小值,结合勾股定理即可得出结果.【详解】设为直线上任意一点,,切线长的最小值为:,故选:D.5、C【解析】根据直线斜率的定义即可求解.【详解】,斜率为1,则倾斜角为.故选:C.6、A【解析】根据题中条件,逐项计算,即可得出结果.【详解】因为,,,所以,因此.故选:A.7、D【解析】设,从4月份起每月底用于下月进借货的资金依次记为,由题意得出的递推关系,变形构造出等比数列,由得其通项公式后可得结论【详解】设,从4月份起每月底用于下月进借货的资金依次记为,,、同理可得,所以,而,所以数列是等比数列,公比为,所以,,总利润为故选:D【点睛】思路点睛:本题考查数列的实际应用.解题方法是用数列表示月初进货款,得出递推关系,然后构造等比数列求解8、C【解析】将所求进行变形可得,根据二项式定理展开式,即可求得答案.【详解】由题意得所以.故选:C9、C【解析】全称命题的否定是特称命题【详解】根据全称命题的否定是特称命题,所以命题“,均有”的否定为“,使得”故选:C10、D【解析】先利用已知一元二次不等式的解集求得参数,再代入所求不等式,利用分式大于零,则分子分母同号,列不等式计算即得结果.【详解】不等式解集为,即的二根是1和2,利用根和系数的关系可知,故不等式即转化成,即,等价于或者,解得或,或者.故解集为,或,或.故选:D.【点睛】分式不等式的解法:(1)先化简成右边为零的形式(或),等价于一元二次不等式(或)再求解即可;(2)先化简成右边为零的形式(或),再利用分子分母同号(或者异号),列不等式组求解即可.11、D【解析】直线,斜率乘积为,斜线斜率等于倾斜角的正切值.【详解】,,所以.故选:D.12、A【解析】由基本不等式直接求解即可得到结果.【详解】由基本不等式知;(当且仅当时取等号),的最大值为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、##0.5【解析】利用球与圆锥相切,得出截面,在平面图形中求解,以及圆锥曲线的来源来理解切点为椭圆的一个焦点,求出,得出离心率.【详解】设球切于,切于E,,球半径为2,所以,,∴,又中,,,故椭圆长轴长为,,根据椭圆在圆锥中截面与二球相切的切点为椭圆的焦点知:球O与相切的切点为椭圆的一个焦点,且,,椭圆的离心率为.故答案:.14、11【解析】根据给定条件结合导数的几何意义直接计算作答.【详解】因曲线在点处的切线方程是,则,,所以.故答案为:1115、##【解析】建立空间直角坐标系,利用空间向量法求出异面直线所成角;【详解】解:如图建立空间直角坐标系,则、、、,所以,,设直线与所成角为,则,因为,所以;故答案为:16、【解析】先求出直线倾斜角,从而可求得直线的倾斜角,则可求出直线的斜率,进而可求出直线的方程【详解】因为直线的斜率为,所以直线的倾斜角为,所以直线的倾斜角为,所以直线的斜率为,因为直线经过,所以直线的方程为,即,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)直线的方程为或或【解析】(1)由弦的中垂线与直线的交点为圆心即可求解;(2)由,可得或,进而有或,显然直线斜率存在,设直线,由点到直线的距离公式求出的值即可得答案.【小问1详解】解:设弦的中点为,则有,因为,所以直线,所以直线的中垂线为,则圆心在直线上,且在直线上,联立方程解得圆心,则圆的半径为,所以圆方程为;【小问2详解】解:设圆心到直线的距离为,因为,所以或,所以或,显然直线斜率存在,所以设直线,则或,解得或或,故直线的方程为或或.18、(1);(2)【解析】(1)设等比数列公比为q,利用与关系可求q,在中令n=1可求;(2)根据等差数列前n项和公式可求,分析{}的通项公式,利用错位相减法求其前n项和.【小问1详解】设等比数列的公比为q,由己知,可得,两式相减可得,即,整理得,可知,已知,令,得,即,解得,故等比数列的通项公式为;【小问2详解】由题意知在与之间插入n个数,这个数组成以为首项的等差数列,∴,设{}前n项和为,①①×3:②①-②:19、(1)点为MC的中点,理由见解析;(2)【解析】(1)由线面垂直得到线线垂直,进而由三线合一得到点为MC的中点;(2)作出辅助线,找到二面角的平面角,利用勾股定理求出各边长,用余弦定理求出答案.【小问1详解】点为MC的中点,理由如下:因为平面,平面,所以,,又,由三线合一得:点为MC的中点【小问2详解】取AB的中点H,连接PH,CH,则由(1)知:,结合点为MC的中点,所以PA=PB,故由三线合一得:PH⊥AB,且CH⊥AB,所以∠CHP即为二面角的平面角,因为,,,所以,,,由勾股定理得:,,,在△PCH中,由余弦定理得:,故二面角的余弦值为20、(1)(2)点为线段上靠近点的三等分点【解析】(1)建立空间直角坐标系,分别写出点的坐标,求出两个平面的法向量代入公式求解即可;(2)假设存在,设,利用相等向量求出坐标,利用线面平行的向量法代入公式计算即可.【小问1详解】如下图所示,以为原点,,,所在直线分别为轴,轴,轴建立空间直角坐标系,则,,,,,,.所以,设平面的法向量,所以,即,令,则,,所以,连接,因为,,,平面,平面,平面,所以平面,所以为平面的一个法向量,所以,由图知,二面角为锐二面角,所以二面角的大小为【小问2详解】假设在线段上存在点,使得平面,设,,,因为平面,所以,即所以,即解得所以在线段上存在点,使得平面,此时点为线段上靠近点的三等分点21、(1);(2)或.【解析】(1)求出圆心到直线的距离,再由垂径定理求弦长;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论