版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽省合肥市一中、六中、八中数学高三上期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,的最大值是()A.8 B.9 C.10 D.112.函数f(x)=lnA. B. C. D.3.若函数的图象如图所示,则的解析式可能是()A. B. C. D.4.已知函数在上可导且恒成立,则下列不等式中一定成立的是()A.、B.、C.、D.、5.已知函数的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有()①绕着轴上一点旋转;②沿轴正方向平移;③以轴为轴作轴对称;④以轴的某一条垂线为轴作轴对称.A.①③ B.③④ C.②③ D.②④6.双曲线﹣y2=1的渐近线方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=07.已知二次函数的部分图象如图所示,则函数的零点所在区间为()A. B. C. D.8.世纪产生了著名的“”猜想:任给一个正整数,如果是偶数,就将它减半;如果是奇数,则将它乘加,不断重复这样的运算,经过有限步后,一定可以得到.如图是验证“”猜想的一个程序框图,若输入正整数的值为,则输出的的值是()A. B. C. D.9.已知,是两条不重合的直线,是一个平面,则下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则10.已知为定义在上的偶函数,当时,,则()A. B. C. D.11.已知集合,,则()A. B.C. D.12.已知全集,集合,则=()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知定义在上的函数的图象关于点对称,,若函数图象与函数图象的交点为,则_____.14.记数列的前项和为,已知,且.若,则实数的取值范围为________.15.已知函数,若,则的取值范围是__16.在正奇数非减数列中,每个正奇数出现次.已知存在整数、、,对所有的整数满足,其中表示不超过的最大整数.则等于______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,,.已知分别是的中点.将沿折起,使到的位置且二面角的大小是60°,连接,如图:(1)证明:平面平面(2)求平面与平面所成二面角的大小.18.(12分)在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为;直线l的参数方程为(t为参数).直线l与曲线C分别交于M,N两点.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)若点P的极坐标为,,求的值.19.(12分)选修4-4:坐标系与参数方程已知曲线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.(1)写出的极坐标方程和的直角坐标方程;(2)已知点、的极坐标分别为和,直线与曲线相交于,两点,射线与曲线相交于点,射线与曲线相交于点,求的值.20.(12分)已知函数.(1)若在上为单调函数,求实数a的取值范围:(2)若,记的两个极值点为,,记的最大值与最小值分别为M,m,求的值.21.(12分)设(1)当时,求不等式的解集;(2)若,求的取值范围.22.(10分)已知函数(1)当时,求不等式的解集;(2)的图象与两坐标轴的交点分别为,若三角形的面积大于,求参数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据题意计算,,,解不等式得到答案.【详解】∵是以1为首项,2为公差的等差数列,∴.∵是以1为首项,2为公比的等比数列,∴.∴.∵,∴,解得.则当时,的最大值是9.故选:.【点睛】本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.2、C【解析】因为fx=lnx2-4x+4x-23=3、A【解析】
由函数性质,结合特殊值验证,通过排除法求得结果.【详解】对于选项B,为奇函数可判断B错误;对于选项C,当时,,可判断C错误;对于选项D,,可知函数在第一象限的图象无增区间,故D错误;故选:A.【点睛】本题考查已知函数的图象判断解析式问题,通过函数性质及特殊值利用排除法是解决本题的关键,难度一般.4、A【解析】
设,利用导数和题设条件,得到,得出函数在R上单调递增,得到,进而变形即可求解.【详解】由题意,设,则,又由,所以,即函数在R上单调递增,则,即,变形可得.故选:A.【点睛】本题主要考查了利用导数研究函数的单调性及其应用,以及利用单调性比较大小,其中解答中根据题意合理构造新函数,利用新函数的单调性求解是解答的关键,着重考查了构造思想,以及推理与计算能力,属于中档试题.5、D【解析】
计算得到,,故函数是周期函数,轴对称图形,故②④正确,根据图像知①③错误,得到答案.【详解】,,,当沿轴正方向平移个单位时,重合,故②正确;,,故,函数关于对称,故④正确;根据图像知:①③不正确;故选:.【点睛】本题考查了根据函数图像判断函数性质,意在考查学生对于三角函数知识和图像的综合应用.6、A【解析】试题分析:渐近线方程是﹣y2=1,整理后就得到双曲线的渐近线.解:双曲线其渐近线方程是﹣y2=1整理得x±2y=1.故选A.点评:本题考查了双曲线的渐进方程,把双曲线的标准方程中的“1”转化成“1”即可求出渐进方程.属于基础题.7、B【解析】由函数f(x)的图象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上单调递增,又g(0)=1-b<0,g(1)=e+2-b>0,根据函数的零点存在性定理可知,函数g(x)的零点所在的区间是(0,1),故选B.8、C【解析】
列出循环的每一步,可得出输出的的值.【详解】,输入,,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数不成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,成立,跳出循环,输出的值为.故选:C.【点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.9、D【解析】
利用空间位置关系的判断及性质定理进行判断.【详解】解:选项A中直线,还可能相交或异面,选项B中,还可能异面,选项C,由条件可得或.故选:D.【点睛】本题主要考查直线与平面平行、垂直的性质与判定等基础知识;考查空间想象能力、推理论证能力,属于基础题.10、D【解析】
判断,利用函数的奇偶性代入计算得到答案.【详解】∵,∴.故选:【点睛】本题考查了利用函数的奇偶性求值,意在考查学生对于函数性质的灵活运用.11、A【解析】
根据对数性质可知,再根据集合的交集运算即可求解.【详解】∵,集合,∴由交集运算可得.故选:A.【点睛】本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题.12、D【解析】
先计算集合,再计算,最后计算.【详解】解:,,.故选:.【点睛】本题主要考查了集合的交,补混合运算,注意分清集合间的关系,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、4038.【解析】
由函数图象的对称性得:函数图象与函数图象的交点关于点对称,则,,即,得解.【详解】由知:得函数的图象关于点对称又函数的图象关于点对称则函数图象与函数图象的交点关于点对称则故,即本题正确结果:【点睛】本题考查利用函数图象的对称性来求值的问题,关键是能够根据函数解析式判断出函数的对称中心,属中档题.14、【解析】
根据递推公式,以及之间的关系,即可容易求得,再根据数列的单调性,求得其最大值,则参数的范围可求.【详解】当时,,解得.所以.因为,则,两式相减,可得,即,则.两式相减,可得.所以数列是首项为3,公差为2的等差数列,所以,则.令,则.当时,,数列单调递减,而,,,故,即实数的取值范围为.故答案为:.【点睛】本题考查由递推公式求数列的通项公式,涉及数列单调性的判断,属综合困难题.15、【解析】
根据分段函数的性质,即可求出的取值范围.【详解】当时,,,当时,,所以,故的取值范围是.故答案为:.【点睛】本题考查分段函数的性质,已知分段函数解析式求参数范围,还涉及对数和指数的运算,属于基础题.16、2【解析】
将已知数列分组为(1),,共个组.设在第组,,则有,即.注意到,解得.所以,.因此,.故.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)45°【解析】
(1)设的中点为,连接,设的中点为,连接,,从而即为二面角的平面角,,推导出,从而平面,则,即,进而平面,推导四边形为平行四边形,从而,平面,由此即可得证.(2)以B为原点,在平面中过B作BE的垂线为x轴,BE为y轴,BA为z轴建立空间直角坐标系,利用向量法求出平面与平面所成二面角的大小.【详解】(1)∵是的中点,∴.设的中点为,连接.设的中点为,连接,.易证:,,∴即为二面角的平面角.∴,而为的中点.易知,∴为等边三角形,∴.①∵,,,∴平面.而,∴平面,∴,即.②由①②,,∴平面.∵分别为的中点.∴四边形为平行四边形.∴,平面,又平面.∴平面平面.(2)如图,建立空间直角坐标系,设.则,,,,显然平面的法向量,设平面的法向量为,,,∴,∴.,由图形观察可知,平面与平面所成的二面角的平面角为锐角.∴平面与平面所成的二面角大小为45°.【点睛】本题主要考查立体几何中面面垂直的证明以及求解二面角大小,难度一般,通常可采用几何方法和向量方法两种进行求解.18、(1),;(2)2.【解析】
(1)由得,求出曲线的直角坐标方程.由直线的参数方程消去参数,即求直线的普通方程;(2)将直线的参数方程化为标准式(为参数),代入曲线的直角坐标方程,韦达定理得,点在直线上,则,即可求出的值.【详解】(1)由可得,即,即,曲线的直角坐标方程为,由直线的参数方程(t为参数),消去得,即直线的普通方程为.(Ⅱ)点的直角坐标为,则点在直线上.将直线的参数方程化为标准式(为参数),代入曲线的直角坐标方程,整理得,直线与曲线交于两点,,即.设点所对应的参数分别为,由韦达定理可得,.点在直线上,,.【点睛】本题考查参数方程、极坐标方程和普通方程的互化及应用,属于中档题.19、(1)线的普通方程为,曲线的直角坐标方程为;(2).【解析】试题分析:(1)(1)利用cos2θ+sin2θ=1,即可曲线C1的参数方程化为普通方程,进而利用即可化为极坐标方程,同理可得曲线C2的直角坐标方程;
(2)由过的圆心,得得,设,,代入中即可得解.试题解析:(1)曲线的普通方程为,化成极坐标方程为曲线的直角坐标方程为(2)在直角坐标系下,,,恰好过的圆心,
∴由得,是椭圆上的两点,在极坐标下,设,分别代入中,有和∴,则,即20、(1);(2)【解析】
(1)求导.根据单调,转化为对恒成立求解(2)由(1)知,是的两个根,不妨设,令.根据,确定,将转化为.令,用导数法研究其单调性求最值.【详解】(1)的定义域为,.因为单调,所以对恒成立,所以,恒成立,因为,当且仅当时取等号,所以;(2)由(1)知,是的两个根.从而,,不妨设,则.因为,所以t为关于a的减函数,所以..令,则.因为当时,在上为减函数.所以当时,.从而,所以在上为减函数.所以当时,.【点睛】本题主要考查导数在函数中的综合应用,还考查了转化化归的思想和运算求解的能力,属于难题.21、(1)(2)【解析】
(1)通过讨论的范围,得到关于的不等式组,解出取并集即可.(2)去绝对值将函数写成分段函数形式讨论分段函数的单调性由恒成立求得结果.【详解】解:(1)当时,,即或或解之得或,即不等式的解集为.(2)由题意得:当时为减函数,显然恒成立.当时,为增函数,,当时,为减函数,综上所述:使恒成立的的取值范围为.【点睛】本题考查了解绝对值不等式问题,考查不等式恒成立问题中求解参数问题,考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高级保育员考试题库及答案
- 2025年全国大学生525心理知识竞赛题库及答案
- 安全教育培训考核试题(项目经理、管理人员、安全员)附答案
- 银行金融考试题库及答案
- 登高操作考试题库及答案
- 大二营养学考试题及答案
- 未来五年小米企业县域市场拓展与下沉战略分析研究报告
- 2026顺义区大孙各庄社区卫生服务中心第一次编外招聘4人备考题库附答案
- 临汾市2025年度市级机关公开遴选公务员参考题库必考题
- 内江市第六人民医院2025年员额人员招聘(14人)考试备考题库附答案
- 小马宋广告战略营销公司简介
- cnc工厂刀具管理办法
- 中科大知识产权管理办法
- 公司一事一议管理制度
- 同等学力硕士学位协议书
- 韩语四六级试题及答案
- 餐厅控烟制度管理制度
- 小学生沟通与礼仪课件
- pid控制介绍课件
- 湖南省娄底市娄星区2024-2025学年九年级上学期期末考试道德与法治试卷(含答案)
- 失业金领取委托书模板
评论
0/150
提交评论