版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届辽宁省朝阳市建平县二中高一上数学期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.关于的不等式恰有2个整数解,则实数的取值范围是()A. B.C. D.2.下列关于函数,的单调性的叙述,正确的是()A.在上是增函数,在上是减函数B.在和上是增函数,在上是减函数C.在上是增函数,在上是减函数D.在上是增函数,在和上是减函数3.函数f(x)=A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)4.已知,则“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.某数学老师记录了班上8名同学的数学考试成绩,得到如下数据:90,98,100,108,111,115,115,125.则这组数据的分位数是()A.100 B.111C.113 D.1156.下列函数中,既是奇函数又在上有零点的是A. B.C D.7.把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是()A. B.C. D.8.将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为()A. B.C. D.9.已知a,b∈(0,+∞),函数f(x)=alog2x+b的图象经过点(4,1)A.6-22 B.C.4+22 D.10.已知,,,则大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.16/17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急,约翰纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数.后来天才数学家欧拉发现了对数与指数的关系,即.现在已知,,则__________.12.已知函数f(x)=(a>0,a≠1)是偶函数,则a=_________,则f(x)的最大值为________.13.Sigmoid函数是一个在生物学、计算机神经网络等领域常用的函数模型,其解析式为S(x)=11+e-x,则此函数在R上________(填“单调递增”“单调递减”或14.夏季为旅游旺季,青岛某酒店工作人员为了适时为游客准备食物,调整投入,减少浪费,他们统计了每个月的游客人数,发现每年各个月份的游客人数会发生周期性的变化,并且有以下规律:①每年相同的月份,游客人数基本相同;②游客人数在2月份最少,在8月份最多,相差约200人;③2月份的游客约为60人,随后逐月递增直到8月份达到最多.则用一个正弦型三角函数描述一年中游客人数与月份之间关系为__________;需准备不少于210人的食物的月份数为__________.15.已知扇形的弧长为,半径为1,则扇形的面积为___________.16.已知函数,若函数在区间内有3个零点,则实数的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某生物研究者于元旦在湖中放入一些风眼莲(其覆盖面积为),这些风眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为,三月底测得凤眼莲的覆盖面积为,凤眼莲的覆盖面积(单位:)与月份(单位:月)的关系有两个函数模型与)可供选择(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲覆盖面积是元旦放入凤眼莲面积倍以上的最小月份.(参考数据:,)18.已知,,且若,求的值;与能否平行,请说明理由19.如图,在四棱锥中,底面,,,,,是中点(Ⅰ)证明:平面;(Ⅱ)求二面角的正弦值20.已知(其中a为常数,且)是偶函数.(1)求实数m的值;(2)证明方程有且仅有一个实数根,若这个唯一的实数根为,试比较与的大小.21.已知点是圆内一点,直线.(1)若圆的弦恰好被点平分,求弦所在直线的方程;(2)若过点作圆的两条互相垂直的弦,求四边形的面积的最大值;(3)若,是上的动点,过作圆的两条切线,切点分别为.证明:直线过定点.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由已知及一元二次不等式的性质可得,讨论a结合原不等式整数解的个数求的范围,【详解】由恰有2个整数解,即恰有2个整数解,所以,解得或,①当时,不等式解集为,因为,故2个整数解为1和2,则,即,解得;②当时,不等式解集为,因为,故2个整数解为,则,即,解得.综上所述,实数的取值范围为或.故选:B.2、D【解析】根据正弦函数的单调性即可求解【详解】解:因为的单调递增区间为,,,单调递减区间为,,,又,,所以函数在,上是增函数,在,和,上是减函数,故选:D3、C【解析】,所以零点在区间(0,1)上考点:零点存在性定理4、B【解析】先由,得到,再由充分条件与必要条件的概念,即可得出结果.【详解】由解得,所以由“”能推出“”,反之,不能推出;因此“”是“”必要不充分条件.故选:B.【点睛】本题主要考查命题的必要不充分条件的判定,熟记充分条件与必要条件的概念即可,属于常考题型.5、D【解析】根据第p百分位数的定义直接计算,再判断作答.【详解】由知,这组数据的分位数是按从小到大排列的第6个位置的数,所以这组数据的分位数是115.故选:D6、D【解析】选项中的函数均为奇函数,其中函数与函数在上没有零点,所以选项不合题意,中函数为偶函数,不合题意;中函数的一个零点为,符合题意,故选D.7、A【解析】由题意,的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),即解析式为,向左平移一个单位为,向下平移一个单位为,利用特殊点变为,选A.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.函数是奇函数;函数是偶函数;函数是奇函数;函数是偶函数.8、C【解析】由题意可得,底面放三个钢球,上再落一个钢球时体积最小,于是把钢球的球心连接,则可得到一个棱长为2的小正四面体,该小正四面体的高为,且由正四面体的性质可知,正四面体的中心到底面的距离是高的,且小正四面体的中心和正四面体容器的中心是重合的,所以小正四面体的中心到底面的距离是,正四面体的中心到底面的距离是,所以可知正四面体的高的最小值为,故选择C考点:几何体的体积9、D【解析】由函数f(x)=alog2x+b的图象经过点(4,1)得到2a+b=1【详解】因为函数f(x)=alog2x+b图象经过点(4,1),所以有alog24+b=1⇒2a+b=1,因为a,b∈(0,+∞),所以有(故选:D【点睛】本题考查了基本不等式的应用,用“1”巧乘是解题的关键,属于一般题.10、B【解析】分别判断与0,1等的大小关系判断即可.【详解】因为.故.又,故.又,故.所以.故选:B【点睛】本题主要考查了根据指对幂函数的单调性判断函数值大小的问题,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】先根据要求将指数式转为对数式,作乘积运算时注意使用换底公式去计算.【详解】∵,∴,∴故答案为2【点睛】底数不同的两个对数式进行运算时,有时可以利用换底公式:将其转化为同底数的对数式进行运算.12、①.②.【解析】根据偶函数f(-x)=f(x)即可求a值;分离常数,根据单调性即可求最大值,或利用基本不等式求最值.【详解】是偶函数,,则,则,即,则,则,则,当且仅当,即,则时取等号,即的最大值为,故答案为:,13、①.单调递增②.0,1【解析】由题可得S(x)=1-1e【详解】∵S(x)=11+e∀x1,x2∵x1<x∴S(x1)-S(所以函数S(x)=11+e又ex所以ex+1>1,0<1故答案为:单调递增;0,1.14、①.②.5【解析】设函数为,根据题意,即可求得函数的解析式,再根据题意得出不等式,即可求解.【详解】设该函数为,根据条件①,可知这个函数的周期是12;由②可知,最小,最大,且,故该函数的振幅为100;由③可知,在上单调递增,且,所以,根据上述分析,可得,解得,且,解得,又由当时,最小,当时,最大,可得,且,又因为,所以,所以游客人数与月份之间的关系式为,由条件可知,化简得,可得,解得,因为,且,所以,即只有五个月份要准备不少于210人的食物.故答案为:;.15、##【解析】利用扇形面积公式进行计算.【详解】即,,由扇形面积公式得:.故答案为:16、【解析】函数在区间内有3个零点,等价于函数和的图象在区间内有3个交点,作出函数和的图象,利用数形结合可得结果【详解】若,则,,若,则,,若,则,,,,,,设和,则方程在区间内有3个不等实根,等价为函数和在区间内有3个不同的零点作出函数和的图象,如图,当直线经过点时,两个图象有2个交点,此时直线为,当直线经过点,时,两个图象有3个交点;当直线经过点和时,两个图象有3个交点,此时直线为,当直线经过点和时,两个图象有3个交点,此时直线为,要使方程,两个图象有3个交点,在区间内有3个不等实根,则,故答案为【点睛】本题主要考查函数的零点与方程根的个数的应用,以及数形结合思想的应用,属于难题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)函数模型较为合适,且该函数模型的解析式为;(2)月份.【解析】(1)根据两个函数模型增长的快慢可知函数模型较为合适,将点、代入函数解析式,求出、的值,即可得出函数模型的解析式;(2)分析得出,解此不等式即可得出结论.【详解】(1)由题设可知,两个函数、)在上均为增函数,随着的增大,函数的值增加得越来越快,而函数的值增加得越来越慢,由于风眼莲在湖中的蔓延速度越来越快,故而函数模型满足要求.由题意可得,解得,,故该函数模型的解析式为;(2)当时,,故元旦放入凤眼莲的面积为,由,即,故,由于,故.因此,凤眼莲覆盖面积是元旦放入凤眼莲面积倍以上的最小月份是月份.【点睛】思路点睛:解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性18、(1);(2)不能平行.【解析】推导出,从而,,进而,由此能求出假设与平行,则推导出,,由,得,不能成立,从而假设不成立,故与不能平行【详解】,,且.,,,,,.假设与平行,则,则,,,,不能成立,故假设不成立,故与不能平行【点睛】本题考查向量的模的求法,考查向量能否平行的判断,考查向量垂直、向量平行的性质等基础知识,考查运算求解能力,是基础题.19、(1)见解析;(2).【解析】(1)通过和得到平面,利用等腰三角形的性质可得,可得结论;(2)过点作,垂足为,连接,证得是二面角的平面角,在中先求出,然后在中求出结论.试题解析:(1)证明:在四棱锥中,因底面,平面,故.由条件,,∴平面.又平面,∴.由,,可得.∵是的中点,∴.又,综上得平面.(2)过点作,垂足为,连接,由(1)知,平面,在平面内的射影是,则因此是二面角的平面角由已知,可得.设,可得,,,在中,∵,∴,则,在中,.20、(1)(2)【解析】(1)由偶函数的定义得对任意的实数恒成立,进而整理得恒成立,故;(2)设,进而得唯一实数根,使得,即,故,再结合得得答案.【小问1详解】解:因为是偶函数,所以对于任意的实数,有,所以对任意的实数恒成立,即恒成立,所以,即,【小问2详解】解:设,因为当时,,所以在区间上无实数根,当时,因为,,所以,使得,又在上单调递减,所以存在唯一实数根;因为,所以,又,所以,所以.所以21
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 3~6岁儿童学习与发展指南测试题(附答案)
- 财会专业期末考试题(附答案)
- 医院招聘医生考试题库及答案
- 德州市技能考试试题及答案
- 畜牧业机械化试题及答案
- 未来五年温泉洗浴服务企业ESG实践与创新战略分析研究报告
- 中医护理学现代技术
- 北京中西医结合医院编外岗位招聘10人参考题库附答案
- 北京科技大学智能科学与技术学院招聘3人备考题库必考题
- 南昌职教城教育投资发展有限公司2025年第七批公开招聘工作人员专题备考题库附答案
- 复方蒲公英注射液在银屑病中的应用研究
- 2023届高考语文二轮复习:小说标题的含义与作用 练习题(含答案)
- 网络直播创业计划书
- 大学任课老师教学工作总结(3篇)
- 3D打印增材制造技术 课件 【ch01】增材制造中的三维模型及数据处理
- 医院保洁应急预案
- 化工设备培训
- 钢结构安装施工专项方案
- 高三体育生收心主题班会课件
- FZ/T 90086-1995纺织机械与附件下罗拉轴承和有关尺寸
- 登杆培训材料课件
评论
0/150
提交评论