陕西省西安市蓝田县2026届高二数学第一学期期末统考模拟试题含解析_第1页
陕西省西安市蓝田县2026届高二数学第一学期期末统考模拟试题含解析_第2页
陕西省西安市蓝田县2026届高二数学第一学期期末统考模拟试题含解析_第3页
陕西省西安市蓝田县2026届高二数学第一学期期末统考模拟试题含解析_第4页
陕西省西安市蓝田县2026届高二数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安市蓝田县2026届高二数学第一学期期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等比数列中,,,则等于()A. B.5C. D.92.设双曲线与椭圆:有公共焦点,.若双曲线经过点,设为双曲线与椭圆的一个交点,则的余弦值为()A. B.C. D.3.若函数在区间内存在最大值,则实数的取值范围是()A. B.C. D.4.圆关于直线对称圆的标准方程是()A. B.C. D.5.已知函数,则()A.函数在上单调递增B.函数上有两个零点C.函数有极大值16D.函数有最小值6.已知空间三点,,在一条直线上,则实数的值是()A.2 B.4C.-4 D.-27.从集合{2,3,4,5}中随机抽取一个数m,从集合{1,3,5}中随机抽取一个数n,则向量=(m,n)与向量=(1,-1)垂直的概率为()A. B.C. D.8.若函数的导函数在区间上是减函数,则函数在区间上的图象可能是()A. B.C. D.9.已知等边三角形的一个顶点在椭圆E上,另两个顶点位于E的两个焦点处,则E的离心率为()A. B.C. D.10.阅读程序框图,该算法的功能是输出A.数列的第4项 B.数列的第5项C.数列的前4项的和 D.数列的前5项的和11.已知函数,则等于()A.0 B.2C. D.12.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差不变;②从统计量中得知有的把握认为吸烟与患肺病有关系,是指有的可能性使得推断出现错误;③回归直线就是散点图中经过样本数据点最多的那条直线;④如果两个变量的线性相关程度越高,则线性相关系数就越接近于;其中错误说法的个数是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数列的前n项和满足:,则________14.已知是首项为,公差为1的等差数列,数列满足,若对任意的,都有成立,则实数的取值范围是________15.若把英语单词“”的字母顺序写错了,则可能出现的错误有______种16.已知长方体中,,,则点到平面的距离为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆:,直线:.圆与圆关于直线对称(1)求圆的方程;(2)点是圆上的动点,过点作圆的切线,切点分别为、.求四边形面积的取值范围18.(12分)已知椭圆的两焦点为、,P为椭圆上一点,且(1)求此椭圆的方程;(2)若点P在第二象限,,求的面积19.(12分)同时抛掷两颗骰子,观察向上点数.(1)试表示“出现两个1点”这个事件相应的样本空间的子集;(2)求出现两个1点”的概率;(3)求“点数之和为7”的概率.20.(12分)如图,在四棱锥中,平面底面ABCD,,,,,(1)证明:是直角三角形;(2)求平面PCD与平面PAB的夹角的余弦值21.(12分)平面直角坐标系中,过椭圆:右焦点的直线交M于A,B两点,P为AB的中点,且OP的斜率为.(1)求椭圆M的方程;(2)C,D为椭圆M上的两点,若四边形ACBD的对角线CD与AB垂直,求四边形ACBD面积的最大值.22.(10分)如图①,直角梯形中,,,点,分别在,上,,,将四边形沿折起,使得点,分别到达点,的位置,如图②,平面平面,.(1)求证:平面平面;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由等比数列的项求公比,进而求即可.【详解】由题设,,∴故选:D2、A【解析】求出双曲线方程,根据椭圆和双曲线的第一定义求出的长度,从而根据余弦定理求出的余弦值【详解】由题得,双曲线中,所以,双曲线方程为:,假设在第一象限,根据椭圆和双曲线的定义可得:,解得:,,所以根据余弦定理,故选:A3、A【解析】利用函数的导数,求解函数的极值,推出最大值,然后转化列出不等式组求解的范围即可【详解】,或,∴在单调递减,在单调递增,在单调递减,∴f(x)有极大值,要使f(x)在上有最大值,则极大值3即为该最大值,则,又或,∴,综上,.故选:A.4、D【解析】先根据圆的标准方程得到圆的圆心和半径,求出圆心关于直线的对称点,进而写出圆的标准方程.【详解】因为圆的圆心为,半径为,且关于直线对称的点为,所以所求圆的圆心为、半径为,即所求圆的标准方程为.故选:D.5、C【解析】对求导,研究的单调性以及极值,再结合选项即可得到答案.【详解】,由,得或,由,得,所以在上递增,在上递减,在上递增,所以极大值为,极小值为,所以有3个零点,且无最小值.故选:C6、C【解析】根据三点在一条直线上,利用向量共线原理,解出实数的值.【详解】解:因为空间三点,,在一条直线上,所以,故.所以.故选:C.【点睛】本题主要考查向量共线原理,属于基础题.7、A【解析】根据分步计数乘法原理求得所有的)共有12个,满足两个向量垂直的共有2个,利用古典概型公式可得结果.【详解】集合{2,3,4,5}中随机抽取一个数,有4种方法;从集合{1,3,5}中随机抽取一个数,有3种方法,所以,所有的共有个,由向量与向量垂直,可得,即,故满足向量与向量垂直的共有2个:,所以向量与向量垂直的概率为,故选A.【点睛】本题主要考查分步计数乘法原理的应用、向量垂直的性质以及古典概型概率公式的应用,属于中档题.在解古典概型概率题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.8、A【解析】根据导数概念和几何意义判断【详解】由题意得,图象上某点处的切线斜率随增大而减小,满足要求的只有A故选:A9、B【解析】根据已知条件求得的关系式,从而求得椭圆的离心率.【详解】依题意可知,所以.故选:B10、B【解析】分析:模拟程序的运行,依次写出每次循环,直到满足条件,退出循环,输出A的值即可详解:模拟程序的运行,可得:

A=0,i=1执行循环体,,

不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,满足条件,退出循环,输出A的值为31.观察规律可得该算法的功能是输出数列{}的第5项.所以B选项是正确的.点睛:模拟程序的运行,依次写出每次循环得到的A,i的值,当i=6时满足条件,退出循环,输出A的值,观察规律即可得解.11、D【解析】先通过诱导公式将函数化简,进而求出导函数,然后算出答案.【详解】由题意,,故选:D.12、C【解析】根据统计的概念逐一判断即可.【详解】对于①,方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,①正确;对于②从统计量中得知有的把握认为吸烟与患肺病有关系,是指有的可能性使得推断出现错误;故②正确;对于③,线性回归方程必过样本中心点,回归直线不一定就是散点图中经过样本数据点最多的那条直线,也可能不过任何一个点;③不正确;对于④,如果两个变量的线性相关程度越高,则线性相关系数就越接近于,不正确,应为相关系数的绝对值就越接近于;综上,其中错误的个数是;故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用“当时,;当时,"即可得出.【详解】当时,当时,,不适合上式,数列的通项公式.故答案为:.14、【解析】先求得,再得出,对于任意的,都有成立,说明是中的最小项【详解】由题意,∴,易知函数在和上都是减函数,且时,,即,时,,,由题意对于任意的,都有成立,则是最小项,∴,解得,故答案为:15、23【解析】先计算该单词所有字母能够组成的所有排列情况,然后减去正确的,即是可能出现错误的情况.【详解】因为“”四个字母组成的全排列共有(种)结果,其中只有排列“”是正确的,其余全是错误的,故可能出现错误的共有(种).故答案为:23.16、##2.4【解析】过作于,可证即为点到平面的距离.【详解】过作于,∵是长方体,∴平面平面,又∵平面平面,∴平面,设点到平面的距离为,∵∥平面,∴根据等面积法得,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)圆关于直线对称,半径不变,只需求出圆心对称的坐标即可.(2)将四边形面积分成两个全等的直角三角形,利用直角三角形的性质,一条直角边不变时,斜边与另外一条直角边的大小成正相关,从而得到面积的最小值与最大值.【小问1详解】由题可知的圆心为,圆的半径与之相同,圆心与之关于对称,设的圆心为,故可根据中点在对称的直线上得到①,根据斜率相乘为-1得到②,联立①②可得,所以圆心坐标为,且半径为,故的方程为【小问2详解】连接,将四边形分割成两个全等的直角三角形,所以有,四边形面积的范围可转化为MP长度的范围,在中,根据勾股定理可知,因为半径长度不变,所以最大时最大;所以最小时最小;画出如下图,当动点P移动至在时面积最小,时面积最大;设点P的坐标为,所以有,解得,所以,,所以,所以;,所以.所以18、(1);(2).【解析】(1)由题可得,根据椭圆的定义,求得,进而求得的值,即可求解;(2)由题可得直线方程为,联立椭圆方程可得点P,利用三角形的面积公式,即求.【小问1详解】设椭圆的标准方程为,焦距为,由题可得,,所以,可得,即,则,所以椭圆的标准方程为【小问2详解】设点坐标为,,,∵,∴所在的直线方程为,则解方程组,可得,∴.19、(1)(2)(3)【解析】(1)由题意直接写出基本事件即可得出答案.(2)样本空间一共有个基本事件,由(1)可得答案.(3)列出“点数之和为7”的基本事件,从而可得答案.【小问1详解】“同时抛掷两颗骰子”的样本空间是{1,2,…,6;1,2,…,6},其中i、j分别是抛掷第一颗与第二颗骰子所得的点数.将“出现两个1点”这个事件用A表示,则事件A就是子集.【小问2详解】样本空间一共有个基本事件,它们是等可能的,从而“出现两个1点”的概率为.小问3详解】将“点数之和为7”这个事件用B表示,则{,,,,,},事件B共有6个基本事件,从而“点数之和为7”的概率为.20、(1)证明见解析(2)【解析】(1)连接BD,在四边形ABCD中求得,在中,取得,得到,由线面垂直的性质证得平面,得到,再由线面垂直的判定定理,证得平面PBD,进而得到,即可证得是直角三角形(2)以为原点,以所在直线为x轴,过点且与平行直线为y轴,所在直线为z轴,建立的空间直角坐标系,分别求得平面和平面的法向量,利用向量的夹角公式,即可求解.【小问1详解】证明:如图所示,连接BD,因为四边形中,可得,,,所以,,则在中,由余弦定理可得,所以,所以因为平面底面,平面底面,底面ABCD,所以平面PAB,因为平面PAB,所以,因为,,所以平面PBD因为平面PBD,所以,即是直角三角形【小问2详解】解:由(1)知平面PAB,取AB的中点O,连接PO,因为,所以,因为平面,平面底面,平面底面,所以底面,以为原点,以所在直线为x轴,过点且与平行的直线为y轴,所在直线为z轴,建立如图所示的空间直角坐标系,设,则,,,,,可得,,,设平面的一个法向量为,则,令,可得,,所以,因为是平面的一个法向量,所以,即平面与平面的夹角的余弦值为21、(1)(2)【解析】(1)设,,的中点为,利用“点差法”求解;(2)由求得A,B的坐标,进而得到的长,再根据,设直线的方程为,由,求得的长,然后由四边形的面积为求解.【小问1详解】解:把右焦点代入直线,得,设,,的中点为,则,,相减得,即,即,即.又,,则.又,解得,,故椭圆的方程为.【小问2详解】联立消去,可得,解得或,故交点为,.所以.因为,所以可设直线的方程为,,,联立消去,得到,因为直线与椭圆有两个不同的交点,则,解得,且,又,则.故四边形的面积为,故当时,取得最大值,最大值为.所以四边形的面积的最大值为.22、(1)证明见解析(2)【解析】(1)根据,,,,易证,再根据平面平面,,得到平面,进而得到,再利用线面垂直的判定定理证明平面即可;(2)根据(1)知,,两两垂直,以,,的方向分别为,,轴的正方向建立空间直角坐标系,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论