版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省“皖南八校”2026届数学高一上期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知正方形的边长为4,动点从点开始沿折线向点运动,设点运动的路程为,的面积为,则函数的图像是()A. B.C. D.2.若的外接圆的圆心为O,半径为4,,则在方向上的投影为()A.4 B.C. D.13.已知函数,则的大致图像为()A. B.C. D.4.缪天荣,浙江人,著名眼科专家、我国眼视光学的开拓者.上世纪年代,我国使用“国际标准视力表”检测视力,采用“小数记录法”记录视力数据,缪天荣发现其中存在不少缺陷.经过年苦心研究,年,他成功研制出“对数视力表”及“分记录法”.这是一种既符合视力生理又便于统计和计算的视力检测系统,使中国的眼视光学研究站在了世界的巅峰.“分记录法”将视力和视角(单位:)设定为对数关系:.如图,标准对数视力表中最大视标的视角为,则对应的视力为.若小明能看清的某行视标的大小是最大视标的(相应的视角为),取,则其视力用“分记录法”记录()A. B.C. D.5.已知直线与圆交于A,两点,则()A.1 B.C. D.6.已知,则()A. B.7C. D.17.某单位共有名职工,其中不到岁的有人,岁的有人,岁及以上的有人,现用分层抽样的方法,从中抽出名职工了解他们的健康情况.如果已知岁的职工抽取了人,则岁及以上的职工抽取的人数为()A. B.C. D.8.某几何体的三视图如图所示,则它的体积是A.B.C.D.9.若a=40.9,b=log415,c=80.4,则()A.b>c>a B.a>b>cC.c>a>b D.a>c>b10.已知函数的最大值与最小值的差为2,则()A.4 B.3C.2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,其所有的零点依次记为,则_________.12.若函数y=loga(2-ax)在[0,1]上单调递减,则a的取值范围是________13.已知,则用表示______________;14.已知函数的零点依次为a,b,c,则=________15.已知表示这个数中最大的数.能够说明“对任意,都有”是假命题的一组整数的值依次可以为_____16.已知幂函数的图象经过点,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2020年初至今,新冠肺炎疫情袭击全球,对人民生命安全和生产生活造成严重影响.在党和政府强有力抗疫领导下,我国控制住疫情后,一方面防止境外疫情输入,另一方面逐步复工复产,减轻经济下降对企业和民众带来的损失.为降低疫情影响,某厂家拟在2022年举行某产品的促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元(m≥0)满足x=4−.已知生产该产品的固定成本为8万元,生产成本为16万元/万件,厂家将产品的销售价格定为万元/万件(产品年平均成本)的1.5倍.(1)将2022年该产品的利润y万元表示为年促销费用m万元的函数;(2)该厂家2022年的促销费用投入多少万元时,厂家的利润最大?18.已知集合.(1)当时.求;(2)若是的充分条件,求实数的取值范围.19.已知函数的图象在定义域(0,+∞)上连续不断,若存在常数T>0,使得对于任意的x>0,恒成立,称函数满足性质P(T).(1)若满足性质P(2),且,求的值;(2)若,试说明至少存在两个不等的正数T1、T2,同时使得函数满足性质P(T1)和P(T2);(3)若函数满足性质P(T),求证:函数存在零点.20.已知函数的部分图象如图所示(1)求的解析式及对称中心坐标:(2)先把的图象向左平移个单位,再向上平移1个单位,得到函数的图象,若当时,求的值域21.已知集合,.(1)分别判断元素,与集合A,B的关系;(2)判断集合A与集合B的关系并说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】当在点的位置时,面积为,故排除选项.当在上运动时,面积为,轨迹为直线,故选选项.2、C【解析】过作的垂线,垂足为,分析条件可得,作出图分析结合投影的几何意义可进而可求得投影..【详解】过作的垂线,垂足为,则M为BC的中点,连接AM,由,可得,所以三点共线,即有,且.所以.在方向上的投影为,故选:C.3、B【解析】计算的值即可判断得解.【详解】解:由题得,所以排除选项A,D.,所以排除选项C.故选:B4、C【解析】将代入,求出的值,即可得解.【详解】将代入函数解析式可得.故选:C.5、C【解析】用点到直线距离公式求出圆心到直线的距离,进而利用垂径定理求出弦长.【详解】圆的圆心到直线距离,所以.故选:C6、A【解析】利用表示,代入求值.【详解】,即,.故选:A7、A【解析】计算抽样比例,求出不到35岁的应抽取人数,再求50岁及以上的应抽取人数.【详解】计算抽样比例为,所以不到35岁的应抽取(人,所以50岁及以上的应抽取(人.故选:.8、A【解析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是.9、D【解析】把化为以为底的指数和对数,利用中间值“”以及指数函数的单调性即可比较大小.【详解】,,,又因为为增函数,所以,即综上可得,a>c>b故选:D【点睛】本题考查了利用中间值以及函数的单调性比较数的大小,属于基础题.10、C【解析】根据解析式可得其单调性,根据x的范围,可求得的最大值和最小值,根据题意,列出方程,即可求得a值.【详解】由题意得在上为单调递增函数,所以,,所以,解得,又,所以.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、16【解析】由零点定义,可得关于的方程.去绝对值分类讨论化简.将对数式化为指数式,再去绝对值可得四个方程.结合韦达定理,求得各自方程两根的乘积,即可得所有根的积.【详解】函数的零点即所以去绝对值可得或即或去绝对值可得或,或当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得综上可得所有零点的乘积为故答案为:【点睛】本题考查了函数零点定义,含绝对值方程的解法,分类讨论思想的应用,由韦达定理研究方程根的关系,属于难题.12、(1,2)【解析】分类讨论得到当时符合题意,再令在[0,1]上恒成立解出a的取值范围即可.【详解】令,当时,为减函数,为减函数,不合题意;当时,为增函数,为减函数,符合题意,需要在[0,1]上恒成立,当时,成立,当时,恒成立,即,综上.故答案为:(1,2).13、【解析】根据对数的运算性质,对已知条件和目标问题进行化简,即可求解.【详解】因为,故可得,解得..故答案:.【点睛】本题考查对数的运算性质,属基础题.14、【解析】根据对称性得出,再由得出答案.【详解】因为函数与的图象关于对称,函数的图象关于对称,所以,又,所以.故答案为:15、(答案不唯一)【解析】首先利用新定义,再列举命题为假命题的一组数值,再根据定义,验证命题是假命题.【详解】设,,则,而,,故命题为假命题,故依次可以为故答案为:(答案不唯一)16、##【解析】根据题意得到,求出的值,进而代入数据即可求出结果.【详解】由题意可知,即,所以,即,所以,因此,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)3万元【解析】(1)依据题意列出该产品的利润y万元关于年促销费用m万元的解析式即可;(2)依据均值定理即可求得促销费用投入3万元时,厂家的利润最大.【小问1详解】由题意知,每万件产品的销售价格为(万元),x=4−则2022年的利润【小问2详解】∵当时,,∴,(当且仅当时等号成立)∴,当且仅当万元时,(万元)故该厂家2022年的促销费用投入3万元时,厂家的利润最大为29万元18、(1)或.(2)【解析】(1)解一元二次不等式求集合A、B,再由集合的补、并运算求即可.(2)由充分条件知,则有,进而求的取值范围.【小问1详解】,当时,,或,∴或;【小问2详解】由是的充分条件,知:,∴,解得,∴的取值范围为.19、(1)0;(2)证明见解析;(3)证明见解析.【解析】(1)由满足性质可得恒成立,取可求,取可求,由此可求的值;(2)设满足,利用零点存在定理证明关于的方程至少有两个解,证明至少存在两个不等的正数,同时使得函数满足性质和;(3)分别讨论,,时函数的零点的存在性,由此完成证明.【小问1详解】因为满足性质,所以对于任意的x,恒成立.又因为,所以,,由可得,所以,;【小问2详解】若正数满足,等价于,记,显然,,因为,所以,,即.因为的图像连续不断,所以存,使得,因此,至少存在两个不等的正数,使得函数同时满足性质和.【小问3详解】若,则1即为零点;因为,若,则,矛盾,故,若,则,,,可得.取即可使得,又因为的图像连续不断,所以,当时,函数在上存在零点,当时,函数在上存在零点,若,则由,可得,由,可得,由,可得.取即可使得,又因为的图像连续不断,所以,当时,函数在上存在零点,当时,函数在上存在零点,综上,函数存在零点.【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.20、(1),()(2)【解析】(1)先根据图象得到函数的最大值和最小值,由此列方程组求得的值,根据周期求得的值,根据求得的值,由此求得的解析式,进而求出的对称中心;(2)根据三角变换法则求得函数的解析式,再换元即可求出的值域【小问1详解】由图象可知:,解得:,又由于,可得:,所以由图像知,,又因为所以,.所以令(),得:()所以的对称中心的坐标为()【小问2详解】依题可得,因为,令,所以,即的值域为21、(1),,,;(2),理由见解析.【解析】(1)根据集合的描述,判
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026云南昭通市公安局第一轮招聘警务辅助人员123人备考题库附答案详解
- 1.2 第2课时 经线和经度 纬线和纬度 利用经纬网定位 同步分层练(含答案)2025-2026学年地理人教版七年级上册
- 2026广东惠州市博罗县司法局招聘司法协理员、司法辅助人员5人备考题库及答案详解参考
- 2025辽宁朝阳市第二医院放射影像技师招聘3人备考题库及1套完整答案详解
- 2026云南昭通市永善县紧密型医共体总院码口镇分院招聘护理及影像学专业人员3人备考题库及完整答案详解
- 2025云南保山昌宁县档案馆招聘公益性岗位人员1人备考题库有完整答案详解
- 2025云南玉溪猫哆哩集团食品有限责任公司第一期招募就业见习人员70人备考题库及参考答案详解
- 2026年南昌县口岸经济发展促进中心招聘工作人员2人备考题库及完整答案详解一套
- 2026南平市公安局莒口派出所招聘2人备考题库完整参考答案详解
- 2026四川启赛微电子有限公司招聘质量工程师岗位3人备考题库及答案详解(考点梳理)
- 静脉治疗新理念
- 高中研究性学习指导课课件系列总结阶段-学生如何开展研究活动
- 心内介入治疗护理
- 民办职业培训方案模板
- 04S519小型排水构筑物(含隔油池)图集
- 旅居养老可行性方案
- 中国焦虑障碍防治指南
- 心包积液及心包填塞
- GB/T 42195-2022老年人能力评估规范
- 两片罐生产工艺流程XXXX1226
- 施工进度计划表完整版
评论
0/150
提交评论