2026届江苏省盐城市盐都区数学高三第一学期期末学业质量监测试题含解析_第1页
2026届江苏省盐城市盐都区数学高三第一学期期末学业质量监测试题含解析_第2页
2026届江苏省盐城市盐都区数学高三第一学期期末学业质量监测试题含解析_第3页
2026届江苏省盐城市盐都区数学高三第一学期期末学业质量监测试题含解析_第4页
2026届江苏省盐城市盐都区数学高三第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江苏省盐城市盐都区数学高三第一学期期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数(表示不超过x的最大整数),若有且仅有3个零点,则实数a的取值范围是()A. B. C. D.2.等差数列中,,,则数列前6项和为()A.18 B.24 C.36 D.723.已知为一条直线,为两个不同的平面,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则4.设x、y、z是空间中不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“且”为真命题的是()A.③④ B.①③ C.②③ D.①②5.某公园新购进盆锦紫苏、盆虞美人、盆郁金香,盆盆栽,现将这盆盆栽摆成一排,要求郁金香不在两边,任两盆锦紫苏不相邻的摆法共()种A. B. C. D.6.下列说法正确的是()A.命题“,”的否定形式是“,”B.若平面,,,满足,则C.随机变量服从正态分布(),若,则D.设是实数,“”是“”的充分不必要条件7.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)8.把函数的图象向右平移个单位长度,得到函数的图象,若函数是偶函数,则实数的最小值是()A. B. C. D.9.正项等比数列中,,且与的等差中项为4,则的公比是()A.1 B.2 C. D.10.已知斜率为2的直线l过抛物线C:的焦点F,且与抛物线交于A,B两点,若线段AB的中点M的纵坐标为1,则p=()A.1 B. C.2 D.411.某校8位学生的本次月考成绩恰好都比上一次的月考成绩高出50分,则以该8位学生这两次的月考成绩各自组成样本,则这两个样本不变的数字特征是()A.方差 B.中位数 C.众数 D.平均数12.如图所示的程序框图,若输入,,则输出的结果是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某学习小组有名男生和名女生.若从中随机选出名同学代表该小组参加知识竞赛,则选出的名同学中恰好名男生名女生的概率为___________.14.设第一象限内的点(x,y)满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为40,则+的最小值为_____.15.已知(2x-1)7=ao+a1x+a2x2+…+a7x7,则a2=____.16.正四棱柱中,,.若是侧面内的动点,且,则与平面所成角的正切值的最大值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线与椭圆恰有一个公共点,与圆相交于两点.(I)求与的关系式;(II)点与点关于坐标原点对称.若当时,的面积取到最大值,求椭圆的离心率.18.(12分)已知各项均为正数的数列的前项和为,满足,,,,恰为等比数列的前3项.(1)求数列,的通项公式;(2)求数列的前项和为;若对均满足,求整数的最大值;(3)是否存在数列满足等式成立,若存在,求出数列的通项公式;若不存在,请说明理由.19.(12分)设等比数列的前项和为,若(Ⅰ)求数列的通项公式;(Ⅱ)在和之间插入个实数,使得这个数依次组成公差为的等差数列,设数列的前项和为,求证:.20.(12分)已知抛物线C:x24py(p为大于2的质数)的焦点为F,过点F且斜率为k(k0)的直线交C于A,B两点,线段AB的垂直平分线交y轴于点E,抛物线C在点A,B处的切线相交于点G.记四边形AEBG的面积为S.(1)求点G的轨迹方程;(2)当点G的横坐标为整数时,S是否为整数?若是,请求出所有满足条件的S的值;若不是,请说明理由.21.(12分)设函数,(1)当,,求不等式的解集;(2)已知,,的最小值为1,求证:.22.(10分)已知中,角所对边的长分别为,且(1)求角的大小;(2)求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据[x]的定义先作出函数f(x)的图象,利用函数与方程的关系转化为f(x)与g(x)=ax有三个不同的交点,利用数形结合进行求解即可.【详解】当时,,当时,,当时,,当时,,若有且仅有3个零点,则等价为有且仅有3个根,即与有三个不同的交点,作出函数和的图象如图,当a=1时,与有无数多个交点,当直线经过点时,即,时,与有两个交点,当直线经过点时,即时,与有三个交点,要使与有三个不同的交点,则直线处在过和之间,即,故选:A.【点睛】利用函数零点的情况求参数值或取值范围的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围;(2)分离参数法:先将参数分离,转化成求函数的值域(最值)问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.2、C【解析】

由等差数列的性质可得,根据等差数列的前项和公式可得结果.【详解】∵等差数列中,,∴,即,∴,故选C.【点睛】本题主要考查了等差数列的性质以及等差数列的前项和公式的应用,属于基础题.3、D【解析】A.若,则或,故A错误;B.若,则或故B错误;C.若,则或,或与相交;D.若,则,正确.故选D.4、C【解析】

①举反例,如直线x、y、z位于正方体的三条共点棱时②用垂直于同一平面的两直线平行判断.③用垂直于同一直线的两平面平行判断.④举例,如x、y、z位于正方体的三个共点侧面时.【详解】①当直线x、y、z位于正方体的三条共点棱时,不正确;②因为垂直于同一平面的两直线平行,正确;③因为垂直于同一直线的两平面平行,正确;④如x、y、z位于正方体的三个共点侧面时,不正确.故选:C.【点睛】此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目.5、B【解析】

间接法求解,两盆锦紫苏不相邻,被另3盆隔开有,扣除郁金香在两边有,即可求出结论.【详解】使用插空法,先排盆虞美人、盆郁金香有种,然后将盆锦紫苏放入到4个位置中有种,根据分步乘法计数原理有,扣除郁金香在两边,排盆虞美人、盆郁金香有种,再将盆锦紫苏放入到3个位置中有,根据分步计数原理有,所以共有种.故选:B.【点睛】本题考查排列应用问题、分步乘法计数原理,不相邻问题插空法是解题的关键,属于中档题.6、D【解析】

由特称命题的否定是全称命题可判断选项A;可能相交,可判断B选项;利用正态分布的性质可判断选项C;或,利用集合间的包含关系可判断选项D.【详解】命题“,”的否定形式是“,”,故A错误;,,则可能相交,故B错误;若,则,所以,故,所以C错误;由,得或,故“”是“”的充分不必要条件,D正确.故选:D.【点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是一道容易题.7、C【解析】

根据并集的求法直接求出结果.【详解】∵,∴,故选C.【点睛】考查并集的求法,属于基础题.8、A【解析】

先求出的解析式,再求出的解析式,根据三角函数图象的对称性可求实数满足的等式,从而可求其最小值.【详解】的图象向右平移个单位长度,所得图象对应的函数解析式为,故.令,,解得,.因为为偶函数,故直线为其图象的对称轴,令,,故,,因为,故,当时,.故选:A.【点睛】本题考查三角函数的图象变换以及三角函数的图象性质,注意平移变换是对自变量做加减,比如把的图象向右平移1个单位后,得到的图象对应的解析式为,另外,如果为正弦型函数图象的对称轴,则有,本题属于中档题.9、D【解析】

设等比数列的公比为q,,运用等比数列的性质和通项公式,以及等差数列的中项性质,解方程可得公比q.【详解】由题意,正项等比数列中,,可得,即,与的等差中项为4,即,设公比为q,则,则负的舍去,故选D.【点睛】本题主要考查了等差数列的中项性质和等比数列的通项公式的应用,其中解答中熟记等比数列通项公式,合理利用等比数列的性质是解答的关键,着重考查了方程思想和运算能力,属于基础题.10、C【解析】

设直线l的方程为x=y,与抛物线联立利用韦达定理可得p.【详解】由已知得F(,0),设直线l的方程为x=y,并与y2=2px联立得y2﹣py﹣p2=0,设A(x1,y1),B(x2,y2),AB的中点C(x0,y0),∴y1+y2=p,又线段AB的中点M的纵坐标为1,则y0(y1+y2)=,所以p=2,故选C.【点睛】本题主要考查了直线与抛物线的相交弦问题,利用韦达定理是解题的关键,属中档题.11、A【解析】

通过方差公式分析可知方差没有改变,中位数、众数和平均数都发生了改变.【详解】由题可知,中位数和众数、平均数都有变化.本次和上次的月考成绩相比,成绩和平均数都增加了50,所以没有改变,根据方差公式可知方差不变.故选:A【点睛】本题主要考查样本的数字特征,意在考查学生对这些知识的理解掌握水平.12、B【解析】

列举出循环的每一步,可得出输出结果.【详解】,,不成立,,;不成立,,;不成立,,;成立,输出的值为.故选:B.【点睛】本题考查利用程序框图计算输出结果,一般要将算法的每一步列举出来,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

从7人中选出2人则总数有,符合条件数有,后者除以前者即得结果【详解】从7人中随机选出2人的总数有,则记选出的名同学中恰好名男生名女生的概率为事件,∴故答案为:【点睛】组合数与概率的基本运用,熟悉组合数公式14、【解析】不等式表示的平面区域阴影部分,当直线ax+by=z(a>0,b>0)过直线x−y+2=0与直线2x−y−6=0的交点(8,10)时,目标函数z=ax+by(a>0,b>0)取得最大40,即8a+10b=40,即4a+5b=20,而当且仅当时取等号,则的最小值为.15、【解析】

根据二项展开式的通项公式即可得结果.【详解】解:(2x-1)7的展开式通式为:当时,,则.故答案为:【点睛】本题考查求二项展开式指定项的系数,是基础题.16、2.【解析】

如图,以为原点建立空间直角坐标系,设点,由得,证明为与平面所成角,令,用三角函数表示出,求解三角函数的最大值得到结果.【详解】如图,以为原点建立空间直角坐标系,设点,则,,又,得即;又平面,为与平面所成角,令,当时,最大,即与平面所成角的正切值的最大值为2.故答案为:2【点睛】本题主要考查了立体几何中的动点问题,考查了直线与平面所成角的计算.对于这类题,一般是建立空间直角坐标,在动点坐标内引入参数,将最值问题转化为函数的最值问题求解,考查了学生的运算求解能力和直观想象能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(II)【解析】

(I)联立直线与椭圆的方程,根据判别式等于0,即可求出结果;(Ⅱ)因点与点关于坐标原点对称,可得的面积是的面积的两倍,再由当时,的面积取到最大值,可得,进而可得原点到直线的距离,再由点到直线的距离公式,以及(I)的结果,即可求解.【详解】(I)由,得,则化简整理,得;(Ⅱ)因点与点关于坐标原点对称,故的面积是的面积的两倍.所以当时,的面积取到最大值,此时,从而原点到直线的距离,又,故.再由(I),得,则.又,故,即,从而,即.【点睛】本题主要考查直线与椭圆的位置关系,以及椭圆的简单性质,通常需要联立直线与椭圆方程,结合韦达定理、判别式等求解,属于中档试题.18、(2),(2),的最大整数是2.(3)存在,【解析】

(2)由可得(),然后把这两个等式相减,化简得,公差为2,因为,,为等比数列,所以,化简计算得,,从而得到数列的通项公式,再计算出,,,从而可求出数列的通项公式;(2)令,化简计算得,从而可得数列是递增的,所以只要的最小值大于即可,而的最小值为,所以可得答案;(3)由题意可知,,即,这个可看成一个数列的前项和,再写出其前()项和,两式相减得,,利用同样的方法可得.【详解】解:(2)由题,当时,,即当时,①②①-②得,整理得,又因为各项均为正数的数列.故是从第二项的等差数列,公差为2.又恰为等比数列的前3项,故,解得.又,故,因为也成立.故是以为首项,2为公差的等差数列.故.即2,4,8恰为等比数列的前3项,故是以为首项,公比为的等比数列,故.综上,(2)令,则所以数列是递增的,若对均满足,只要的最小值大于即可因为的最小值为,所以,所以的最大整数是2.(3)由,得,③④③-④得,⑤,⑥⑤-⑥得,,所以存在这样的数列,【点睛】此题考查了等差数列与等比数列的通项公式与求和公式,最值,恒成立问题,考查了推理能力与计算能力,属于中档题.19、(Ⅰ);(Ⅱ)详见解析.【解析】

(Ⅰ),,两式相减化简整理利用等比数列的通项公式即可得出.(Ⅱ)由题设可得,可得,利用错位相减法即可得出.【详解】解:(Ⅰ)因为,故,两式相减可得,,故,因为是等比数列,∴,又,所以,故,所以;(Ⅱ)由题设可得,所以,所以,①则,②①-②得:,所以,得证.【点睛】本题考查了数列递推关系、等比数列的通项公式求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.20、(1)(2)当G点横坐标为整数时,S不是整数.【解析】

(1)先求解导数,得出切线方程,联立方程得出交点G的轨迹方程;(2)先求解弦长,再分别求解点到直线的距离,表示出四边形的面积,结合点G的横坐标为整数进行判断.【详解】(1)设,则,抛物线C的方程可化为,则,所以曲线C在点A处的切线方程为,在点B处的切线方程为,因为两切线均过点G,所以,所以A,B两点均在直线上,所以直线AB的方程为,又因为直线AB过点F(0,p),所以,即G点轨迹方程为;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论