版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省宣威市第十中学2026届数学高一上期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数(为自然对数的底)的零点所在的区间为A. B.C. D.2.已知函数,则的解析式是()A. B.C. D.3.设命题,使得,则命题为的否定为()A., B.,使得C., D.,使得4.空间直角坐标系中,点关于平面的对称点为点,关于原点的对称点为点,则间的距离为A. B.C. D.5.已知关于的方程()的根为负数,则的取值范围是()A. B.C. D.6.七巧板,又称七巧图、智慧板,是中国古代劳动人民的发明,其历史至少可以追溯到公元前一世纪,到了明代基本定型,于明、清两代在民间广泛流传.某同学用边长为4dm的正方形木板制作了一套七巧板,如图所示,包括5个等腰直角三角形,1个正方形和1个平行四边形.若该同学从5个三角形中任取出2个,则这2个三角形的面积之和不小于另外3个三角形面积之和的概率是()A. B.C. D.7.函数f(x)=ln(2x)-1的零点位于区间()A.(2,3) B.(3,4)C.(0,1) D.(1,2)8.已知等边两个顶点,且第三个顶点在第四象限,则边所在的直线方程是A. B.C. D.9.已知集合,集合,则()A.{-1,0,1} B.{1,2}C.{-1,0,1,2} D.{0,1,2}10.命题“,”否定是()A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.高斯是德国著名的数学家,用其名字命名的“高斯函数”为,其中表示不超过x的最大整数.例如:,.已知函数,若,则________;不等式的解集为________.12.给出下列五个论断:①;②;③;④;⑤.以其中的两个论断作为条件,一个论断作为结论,写出一个正确的命题:___________.13.在中,角、、所对的边为、、,若,,,则角________14.已知函数,设,,若成立,则实数的最大值是_______15.各条棱长均相等的四面体相邻两个面所成角的余弦值为___________.16.当时,,则a的取值范围是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.有一种新型的洗衣液,去污速度特别快,已知每投放个(,且)单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中.若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液浓度不低于克/升时,它才能起到有效去污的作用.(1)若只投放一次个单位的洗衣液,当两分钟时水中洗衣液的浓度为克/升,求的值;(2)若只投放一次个单位的洗衣液,则有效去污时间可达几分钟?(3)若第一次投放个单位的洗衣液,分钟后再投放个单位的洗衣液,则在第分钟时洗衣液是否还能起到有效去污的作用?请说明理由.18.目前全球新冠疫情严重,核酸检测结果成为是否感染新型冠状病毒的重要依据,某核酸检测机构,为了快速及时地进行核酸检测,花费36万元购进核酸检测设备.若该设备预计从第1个月到第个月的检测费用和设备维护费用总计为万元,该设备每月检测收入为20万元.(1)该设备投入使用后,从第几个月开始盈利?(即总收入减去成本及所有支出费用之差为正值);(2)若该设备使用若干月后,处理方案有两种:①月平均盈利达到最大值时,以20万元价格卖出;②盈利总额达到最大值时,以16万元的价格卖出.哪一种方案较为合算?请说明理由.19.已知函数图象的一条对称轴方程为,且其图象上相邻两个零点的距离为.(1)求的解析式;(2)若对,不等式恒成立,求实数m的取值范围.20.某兴趣小组在研究性学习活动中,通过对某商店一种商品销售情况的调查发现:该商品在过去的一个月内(以天计)的日销售价格(元)与时间(天)的函数关系近似满足(为常数).该商品的日销售量(个)与时间(天)部分数据如下表所示:(天)(个)已知第天该商品日销售收入为元.(1)求出该函数和的解析式;(2)求该商品的日销售收入(元)的最小值.21.已知函数.(Ⅰ)用“五点法”作出该函数在一个周期内的图象简图;(Ⅱ)请描述如何由函数的图象通过变换得到的图象.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】分析:先判断函数的单调性,然后结合选项,利用零点的存在定理,即可求解.详解:由题意,函数为单调递减函数,又因为,由函数的零点判断可知,函数的零点在区间,故选B.点睛:本题主要考查了函数的零点的判定定理及应用,其中熟记函数的零点的存在定理是解答本题的关键,着重考查了推理与计算能力,属于基础题.2、A【解析】由于,所以.3、C【解析】根据给定条件由含有一个量词的命题的否定方法直接写出p的否定判断作答.【详解】依题意,命题是存在量词命题,其否定是全称量词命题,所以命题的否定是:,.故选:C4、C【解析】分析:求出点关于平面的对称点,关于原点的对称点,直接利用空间中两点间的距离公式,即可求解结果.详解:在空间直角坐标系中,点关于平面的对称点,关于原点的对称点,则间的距离为,故选C.点睛:本题主要考查了空间直角坐标系中点的表示,以及空间中两点间的距离的计算,着重考查了推理与计算能力,属于基础题.5、D【解析】分类参数,将问题转化为求函数在的值域,再利用指数函数的性质进行求解.【详解】将化为,因为关于的方程()的根为负数,所以的取值范围是在的值域,当时,,则,即的取值范围是.故选:D.6、D【解析】先逐个求解所有5个三角形的面积,再根据要求计算概率.【详解】如图所示,,,,,的面积分别为,,将,,,,分别记为,,,,,从这5个三角形中任取出2个,则样本空间,共有10个样本点记事件表示“从5个三角形中任取出2个,这2个三角形的面积之和不小于另外3个三角形面积之和”,则事件包含的样本点为,,,共3个,所以故选:D7、D【解析】根据对数函数的性质,得到函数为单调递增函数,再利用零点的存在性定理,即可求解,得到答案.【详解】由题意,函数,可得函数为单调递增函数,且是连续函数又由f(1)=ln2-1<0,f(2)=ln4-1>0,根据函数零点的存在性定理可得,函数f(x)的零点位于区间(1,2)上故选D.【点睛】本题主要考查了函数的零点问题,其中解答中合理使用函数零点的存在性定理是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.8、C【解析】如图所示,直线额倾斜角为,故斜率为,由点斜式得直线方程为.考点:直线方程.9、B【解析】由交集定义求得结果.【详解】由交集定义知故选:B10、B【解析】根据命题的否定的定义判断.【详解】命题“,”的否定是:,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】第一空:”根据“高斯函数”的定义,可得,进而再分类讨论建立方程求值即可;第二空:分类讨论建立不等式求解即可.【详解】由题意,得,当时,,即;当时,,即(舍),综上;当时,,即,当时,,即,综上,.故答案为:;.【点睛】关键点睛:求解分段函数相关问题的关键是“分段归类”,即应用分类讨论思想.12、②③⇒⑤;③④⇒⑤;②④⇒⑤【解析】利用不等式的性质和做差比较即可得到答案.【详解】由②③⇒⑤,因为,,则.由③④⇒⑤,由于,,则,所以.由②④⇒⑤,由于,且,则,所以.故答案为:②③⇒⑤;③④⇒⑤;②④⇒⑤13、.【解析】利用余弦定理求出的值,结合角的取值范围得出角的值.【详解】由余弦定理得,,,故答案为.【点睛】本题考查余弦定理的应用和反三角函数,解题时要充分结合元素类型选择正弦定理和余弦定理解三角形,考查计算能力,属于中等题.14、【解析】设不等式的解集为,从而得出韦达定理,由可得,要使,即不等式的解集为,则可得,以及是方程的两个根,再得出其韦达定理,比较韦达定理可得出,从而求出与的关系,代入,得出答案.【详解】,则由题意设集合,即不等式的解集为所以是方程的两个不等实数根则,则由可得,由,所以不等式的解集为所以是方程,即的两个不等实数根,所以故,,则,则,则由,即,即,解得综上可得,所以的最大值为故答案:15、【解析】首先利用图像作出相邻两个面所成角,然后利用已知条件求出正四面体相邻两个面所成角的两边即可求解.【详解】由题意,四面体为正三棱锥,不妨设正三棱锥的边长为,过作平面,垂足为,取的中点,并连接、、、,如下图:由正四面体的性质可知,为底面正三角形的中心,从而,,∵为的中点,为正三角形,所以,,所以为正四面体相邻两个面所成角∵,∴易得,,∵平面,平面,∴,故.故答案为:.16、【解析】分类讨论解一元二次不等式,然后确定参数范围【详解】,若,则或,此时时,不等式成立,若,则或,要满足题意,则,即综上,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)分钟;(3)见详解.【解析】(1)由只投放一次个单位的洗衣液,当两分钟时水中洗衣液的浓度为克/升,根据已知可得,,代入可求出的值;(2)由只投放一次个单位的洗衣液,可得,分、两种情况解不等式即可求解;(3)令,由题意求出此时的值并与比较大小即可.【详解】(1)因为,当两分钟时水中洗衣液的浓度为克/升时,可得,即,解得;(2)因为,所以,当时,,将两式联立解之得;当时,,将两式联立解之得,综上可得,所以若只投放一次个单位的洗衣液,则有效去污时间可达分钟;(3)当时,由题意,因为,所以在第分钟时洗衣液能起到有效去污的作用.【点睛】本题主要考查分段函数模型的选择和应用,其中解答本题的关键是正确理解水中洗衣液浓度不低于克/升时,它才能起到有效去污的作用,属中等难度题.18、(1)第4个月开始盈利(2)方案①较为合算,理由见解析【解析】(1)求出利润表达式然后解不等式可得答案;(2)分别计算出两种方案的利润比较可得答案.【小问1详解】由题意得,即,解得,∴.∴该设备从第4个月开始盈利.【小问2详解】该设备若干月后,处理方案有两种:①当月平均盈利达到最大值时,以20万元的价格卖出,.当且仅当时,取等号,月平均盈利达到最大,∴方案①的利润为:(万元).②当盈利总额达到最大值时,以16万元的价格卖出.,∴或时,盈利总额最大,∴方案②的利润为20+16=36(万元),∵38>36,∴方案①较为合算.19、(1)(2)【解析】(1)由题意可得周期为,则可求出的值,再由一条对称轴方程为,可得,可求出的值,从而可求得解析式,(2)由题意得对恒成立,所以利用三角函数的性质求出即可,从而可求出实数m的取值范围【小问1详解】因为图象上相邻两个零点的距离为,所以周期为,所以,得,所以,因为图象的一条对称轴方程为,所以,即,所以,因为,所以,所以【小问2详解】由(1)得对恒成立,因为,所以,所以,则,所以,解得,所以实数m的取值范围为20、(1),(2)最小值为元【解析】(1)利用可求得的值,利用表格中的数据可得出关于、的方程组,可解得、的值,由此可得出函数和的解析式;(2)求出函数的解析式,利用基本不等式、函数单调性求得在且、且的最小值,比较大小后可得出结论.【小问1详解】解:依题意知第天该商品的日销售收入为,解得,所以,.由表格可知,解得.所以,.【小问2详解】解:由(1)知,当且时,,当且时,.,当时,由基本不等式可得,当且仅当时,等号成立,即.当时,因为函数、均为减函数,则函数为减函数,所以当时,取得最小值,且.综上所述,当时,取得最小值,且.故该商品的日销售收入的最小值为元.21、(Ⅰ)图象见解析;(Ⅱ)答案不唯一,见解析.【解析】(Ⅰ)分别令取、、、、,列表、描点、连线可作出函数在一个周期内的图象简图;(Ⅱ)根据三角函数图象的变换原则可得出函数的图象通过变换得到的图象的变换过程.【详解】(Ⅰ)列表如下:函数在一个周期内的图象简图如下图所示:(Ⅱ)总共有种变换方式,如下所示:方法一:先将函数的图象向左平移个单位,将所得图象上每个点的横坐标缩短为原来的倍,再将所得图象上每个点的纵坐标伸长为原来的倍,可得到函数的图象;方法二:先将函数的图象向左平移个单位,将所得图象上每个点的纵坐标伸长为原来的倍,再将所得图象上每个点的横坐标缩短为原来的倍,可得到函数的图象;方法三:先将函数的图象上每个点的横坐标缩短为原来的倍,将所得图象向左平移个单位,再将所得图象上每个点的纵坐标伸长为原来的倍,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美术专业绘画题库及答案
- 安全管理人员安全教育培训试题附参考答案
- 医院保洁人员院感培训试题及答案
- 技能应用大赛试题及答案
- 住院医师(规培)试题及答案
- 注册会计师《经济法》反垄断法律制度单元测试题附答案
- 医院编外试题及答案
- 2025药学专业知识一试题及答案「」
- 高频黄岩社工面试题及答案
- 辽宁省朝阳市省直机关公开遴选公务员笔试题及答案解析(A类)
- 《鲤鱼的遇险》读书分享
- 融媒体中心党支部2025年前三季度党建工作总结范文
- 从2025上半年宏观经济及酒类景气指数看酒类发展趋势报告
- 2025急诊监护室CRRT相关知识考试试题及答案
- 雨水收集利用方案
- 自动扶梯应急预案演练计划(3篇)
- 1000立方米高性能聚甲基丙稀酰亚胺(PMI)泡沫新材料技改项目可行性研究报告模板-立项备案
- 动物福利与动物伦理课件
- 宁夏科技经费管理办法
- 擒敌拳教学课件
- (高清版)DB11∕T 2436-2025 寄生蜂类天敌繁育与应用技术规范
评论
0/150
提交评论