人教版七年级数学下册《7.1.3两直线被第三条直线所截》同步练习题(含答案解析)_第1页
人教版七年级数学下册《7.1.3两直线被第三条直线所截》同步练习题(含答案解析)_第2页
人教版七年级数学下册《7.1.3两直线被第三条直线所截》同步练习题(含答案解析)_第3页
人教版七年级数学下册《7.1.3两直线被第三条直线所截》同步练习题(含答案解析)_第4页
人教版七年级数学下册《7.1.3两直线被第三条直线所截》同步练习题(含答案解析)_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第页人教版七年级数学下册《7.1.3两直线被第三条直线所截》同步练习题(含答案解析)类型一、同位角的识别1.(24-25七年级上·全国·课后作业)下列图形中,∠1和∠2不是同位角的是(

)A.B.C.D.2.(24-25七年级上·全国·期末)下列图形中,∠1和∠2不是同位角的是()A.B.C.D.类型二、内错角的识别3.(2024七年级上·全国·专题练习)下列图形中,∠1与∠2是内错角的是(

)A.B.C.D.4.(24-25七年级上·云南文山·期中)下列各图中,∠1与∠2是内错角的是(

)A.B. C.D.5.(24-25七年级上·湖北武汉·阶段练习)如图当中的内错角一共有(

)对A.2 B.3 C.4 D.5类型三、同旁内角的识别6.(2024七年级上·全国·专题练习)如图,与∠C互为同旁内角的有(

)A.1个 B.2个 C.3个 D.4个7.(2024七年级上·全国·专题练习)2024年香洲区举办了第六届风筝节.如图所示的风筝骨架中,与∠3构成同旁内角的是(

)A.∠1 B.∠2 C.∠4 D.∠58.(24-25七年级上·全国·课后作业)已知∠1和∠2是同旁内角,则(

)A.∠1=∠2 B.∠1>∠2 C.∠1+∠2=180° D.以上均有可能类型四、同位角、内错角、同旁内角的识别9.(11-12七年级·湖北黄冈·阶段练习)如图,下列结论正确的是()A.∠5与∠2是对顶角 B.∠1与∠3是同位角C.∠2与∠3是同旁内角 D.∠1与∠2是同旁内角10.(2024七年级上·全国·专题练习)如图,下列结论正确的是(

)A.∠1与∠2互为内错角 B.∠3与∠4互为内错角C.∠1与∠3互为同旁内角 D.∠2与∠4互为同位角11.(2024七年级上·全国·专题练习)下列说法不正确的是()A.∠1和∠5是同旁内角 B.∠1和∠4是内错角C.∠3和∠4是同位角 D.∠1和∠2是同旁内角12.(2024七年级下·云南·专题练习)如图,∠1的同位角是,∠2的内错角,∠A的同旁内角是.类型五、找出同位角、内错角、同旁内角13.(2024七年级上·全国·专题练习)分别指出下列图中的同位角、内错角、同旁内角.14.(2024七年级上·全国·专题练习)在直角三角形ABC中,∠C=90°,DE⊥AC于点E,交AB于点D.

(1)试指出直线BC、DE被直线AB所截时,∠3的同位角、内错角和同旁内角;(2)试说明∠1=∠2=∠3.(提示:三角形内角和是180°)15.(23-24七年级上·全国·单元测试)找出图中与∠1是同位角、内错角、同旁内角的所有角.类型六、求同位角、内错角、同旁内角的度数16.(2024七年级上·全国·专题练习)如图,直线AB,CD被EF所截,交点分别为G,F,(1)试确定CD与EF的位置关系,并说明理由;(2)求∠CFG的同位角、内错角、同旁内角的度数.17.(24-25七年级上·全国·课后作业)两条直线被第三条直线所截,∠1与∠2是同旁内角,∠3与∠2是内错角.(1)画出示意图;(2)若∠1=3∠2,∠2=3∠3,求∠1、∠2的度数.类型七、同位角、内错角、同旁内角的对数问题18.(23-24七年级下·全国·假期作业)如图(1),三条直线两两相交,且不共点,则图中同旁内角有对:如图(2),四条直线两两相交,任三条直线不经过同一点,则图中的同旁内角有对.19.(23-24七年级上·全国·单元测试)如图,已知与∠1构成同位角的角的个数是m,与∠2构成内错角的角的个数是n,求m+n的值.20.(23-24七年级下·陕西西安·阶段练习)将复杂的平面图形分解成若干个基本图形是解决疑难问题的法宝.在学习几何的过程中,多总结、归纳几何基本图形,一定会得到意想不到的收获.数学大师罗增儒在著作《数学解题学引论》中也专门阐述了把复杂的数学问题分解为基本问题来研究,化繁为简,化整为零这是一种常见的数学解题思想.

(1)在《相交线与平行线》这章中,有一个基本图形:三线八角(如图1),图1中,有______对同位角,______对同旁内角,______对内错角;(2)如图2,平面内三条直线两两相交,图2中,有______对同位角,______对同旁内角,______对内错角;(3)如图3,平行直线AB、CD与相交直线EF、GH相交,则图中同旁内角共有______对;(4)如图,AD∥EG∥BC,AC∥一、单选题1.(24-25七年级上·河南鹤壁·阶段练习)如图,在所标识的角中,下列说法不正确的是(

)A.∠1与∠5是内错角 B.∠3与∠5是对顶角C.∠1与∠4是同位角 D.∠1与∠2是同旁内角2.(22-23七年级上·广东河源·期末)如图,∠1的同位角共有(

)A.1个 B.2个 C.3个 D.4个3.(23-24七年级下·辽宁沈阳·期末)科技是国家强盛之基,创新是民族进步之魂.近些年来,我国的航空事业不断发展,在如左图所示的飞机中抽象出右图的数学图形,在右图中,与∠1构成同旁内角的是(

)A.∠2 B.∠3 C.∠4 D.∠54.(23-24七年级下·河南驻马店·期末)如图所示,∠ABC的一边和∠DEF的一边相交于一点,下列说法错误的是(

).A.∠B和∠4是同位角 B.∠B和∠1是同旁内角C.∠E和∠3是内错角 D.∠B和∠E是同位角5.(23-24七年级下·重庆秀山·期末)如图,直线a,b被直线c所截,则(

A.∠1与∠2是对顶角 B.∠1与∠2是内错角C.∠1与∠3是内错角 D.∠1与∠3是同位角6.(23-24七年级下·湖北随州·期末)如图,∠1与∠2不是同位角的图形有(

)A. B. C. D.7.(23-24七年级下·辽宁沈阳·阶段练习)在下列图形中,∠1和∠2是同位角的是(

)A. B. C. D.8.(23-24七年级下·山西吕梁·期中)量角器每条刻度线上都标记着两个角度,如70°和110°标记在同一刻度线上,那么同一刻度上的这两个角度表示的角是一对(

)A.对顶角 B.同位角 C.邻补角 D.同旁内角二、填空题9.(23-24七年级上·全国·单元测试)如图,∠1的同位角是,∠B的内错角是,与是同旁内角.

10.(23-24七年级下·全国·单元测试)根据图形填空:(1)若直线ED,BC被直线AB所截,则∠1和是同位角;(2)若直线ED,BC被直线AF所截,则∠3和是内错角;(3)∠1和∠3是直线AB,AF被直线所截构成的角;11.(23-24七年级下·山东聊城·开学考试)如图,从已经标出的五个角中,(1)直线AC,BD被直线ED所截,∠1与是同位角;(2)直线AB,CD被直线AC所截,∠1与是内错角;(3)直线AB,CD被直线BD所截,∠2与是同旁内角.12.(23-24七年级下·广东东莞·期末)如图,直线a,b被直线c所截,则∠4的同旁内角是.13.(22-23七年级下·山东聊城·期中)如图,三角形ABC的边BC在直线MD上,直线HE平行于MD分别交AB,AC于点G,F,则图中共有内错角的对数为.14.(23-24七年级下·甘肃武威·阶段练习)在如图所示的6个角中,同位角有对,它们是;内错角有对,它们是;同旁内角有对,它们是.15.(23-24七年级下·山东聊城·阶段练习)如图所示的八个角中,同位角有对,内错角有对,同旁内角有对.三、解答题16.(23-24七年级下·山东菏泽·期中)如图所示,已知∠1=115°,∠2=65°,∠3=95°36'.(1)图中所有角中(包含没有标数字的角),共有几对内错角;(2)求∠4的大小.17.(23-24七年级下·宁夏银川·期中)如图,把一根筷子一端放在水里,一端露出水面,筷子变弯了?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.(1)请指出∠1的同旁内角与∠2的内错角;(2)若测得∠AOE=65°,∠BOM=145°,从水面上看斜插入水中的筷子,水下部分向上折弯了多少度?请说明理由.18.(2024七年级下·浙江·专题练习)如图所示,(1)∠AED和∠ACB是、被所截得的角.(2)∠DEB和∠是DE、BC被所截得的内错角.(3)∠和∠是DE、BC被AC所截而成的同旁内角.(4)∠和∠是AB、AC被BE所截得的内错角.19.(2024七年级下·江苏·专题练习)如图.(1)当直线AC、DG被直线CD所截时,∠2的内错角是;(2)∠AEF的同位角是;(3)∠1的同旁内角是.20.(2024七年级上·全国·专题练习)如图,写出图中所有的内错角和同旁内角.解:内错角是∠B与∠DAB,∠C与∠EAC;(第一步)同旁内角是∠B与∠C,∠C与∠BAC.(第二步)上面的解答过程是否正确?若不正确,请指出哪一步出错,并写出你认为正确的结论.参考答案与解析类型一、同位角的识别1.(24-25七年级上·全国·课后作业)下列图形中,∠1和∠2不是同位角的是(

)A. B.C. D.【答案】C【分析】本题考查同位角,理解同位角的定义是正确判断的关键.根据同位角的定义进行判断即可.【详解】解:由同位角的定义可知,选项C中的∠1和∠2不是同位角,故选:C.2.(24-25七年级上·全国·期末)下列图形中,∠1和∠2不是同位角的是()A. B.C. D.【答案】C【分析】本题主要考查的是同位角的定义,掌握同位角的定义是解题的关键.利用同位角定义,即同位角是指两条直线与第三条直线相交,在第三条直线的同旁,两条直线同一侧的角.进行解答即可.【详解】解:A、∠1和∠2是同位角,故此选项不合题意;B、∠1和∠2是同位角,故此选项不合题意;C、∠1和∠2不是同位角,故此选项符合题意;D、∠1和∠2是同位角,故此选项不合题意;故选:C.类型二、内错角的识别3.(2024七年级上·全国·专题练习)下列图形中,∠1与∠2是内错角的是(

)A. B.C. D.【答案】D【分析】此题主要考查了内错角,关键是掌握内错角的边构成“Z”形.根据内错角定义∶两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角进行解答即可.【详解】解∶A、∠1与∠2不是内错角,故此选项不符合题意;B、∠1与不是内错角,故此选项不符合题意;C、∠1与∠2不是内错角,故此选项不符合题意;D、∠1与∠2是内错角,此选项符合题意;故选∶D.4.(24-25七年级上·云南文山·期中)下列各图中,∠1与∠2是内错角的是(

)A. B. C. D.【答案】A【分析】本题考查了内错角的判断,熟记内错角的定义是解题的关键.两条直线被第三条直线所截形成的八个角中,两个角分别在截线的两侧,且在两条直线之间,具有这样位置关系的一对角叫做内错角.根据内错角的定义可知,内错角是成“Z”字形的两个角,据此逐项分析可得答案.【详解】解:A.、∠1与∠2是内错角,符合题意;B、∠1与∠2不是内错角,不符合题意;C、∠1与∠2不是内错角,不符合题意;D、∠1与∠2不是内错角,不符合题意;故选:A.5.(24-25七年级上·湖北武汉·阶段练习)如图当中的内错角一共有(

)对A.2 B.3 C.4 D.5【答案】C【分析】本题考查了内错角的定义,正确记忆内错角的定义是解决本题的关键.根据内错角是在截线两旁,被截线之内的两角,内错角的边构成“Z”形作答.【详解】解:∠1和∠7是内错角,∠2和∠9是内错角,∠4和∠6是内错角,∠5和∠9是内错角,∴内错角一共有4对.故选:C.类型三、同旁内角的识别6.(2024七年级上·全国·专题练习)如图,与∠C互为同旁内角的有(

)A.1个 B.2个 C.3个 D.4个【答案】C【分析】本题考查了同旁内角的定义,注意在截线的同旁找同旁内角,要结合图形,熟记同旁内角的位置特点.根据两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行解答即可.【详解】解∶由图形可知:∠C的同旁内角有∠A,∠CED,∠B,共3个.故选C.7.(2024七年级上·全国·专题练习)2024年香洲区举办了第六届风筝节.如图所示的风筝骨架中,与∠3构成同旁内角的是(

)A.∠1 B.∠2 C.∠4 D.∠5【答案】A【分析】本题考查的是同旁内角的定义,关键是知道哪两条直线被第三条直线所截.根据同旁内角的定义解答即可,即两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角.【详解】解:与∠3构成同旁内角的是∠1.故选:A.8.(24-25七年级上·全国·课后作业)已知∠1和∠2是同旁内角,则(

)A.∠1=∠2 B.∠1>∠2 C.∠1+∠2=180° D.以上均有可能【答案】D【分析】本题考查了同旁内角的相关知识,关键在于理解同旁内角不一定具有固定的大小关系.同旁内角是指两条直线被第三条直线所截,在截线同旁,且在被截两直线之内的角.根据定义即可知同旁内角只有位置关系,没有大小关系.【详解】同旁内角只有在两直线平行的条件下才会互补,其他条件下同旁内角只具有位置关系,没有大小关系,故而∠1=∠2、∠1>∠2、∠1+∠2=180°均有可能.故选:D.类型四、同位角、内错角、同旁内角的识别9.(11-12七年级·湖北黄冈·阶段练习)如图,下列结论正确的是()A.∠5与∠2是对顶角 B.∠1与∠3是同位角C.∠2与∠3是同旁内角 D.∠1与∠2是同旁内角【答案】D【分析】本题主要考查了对顶角的定义,相交线及其所成的角等知识点,熟练掌握相关定义是解题的关键:①对顶角:有一个公共顶点,且一个角的两条边分别是另一个角的两条边的反向延长线,那么这两个角就叫做对顶角;②同位角:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角;③内错角:两个角在截线的异侧,且在两条被截线之间,具有这样位置关系的一对角互为内错角;④同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.根据对顶角、同位角、同旁内角的定义进行判断即可.【详解】解:根据对顶角、同位角、同旁内角的定义进行判断,A.∠5与∠2+∠3是对顶角,该结论错误,故选项A不符合题意;B.∠1与∠3+∠4是同位角,该结论错误,故选项B不符合题意;C.∠2与∠3没有处在两条被截线之间,该结论错误,故选项C不符合题意;D.∠1与∠2是同旁内角,该结论正确,故选项D符合题意;故选:D.10.(2024七年级上·全国·专题练习)如图,下列结论正确的是(

)A.∠1与∠2互为内错角 B.∠3与∠4互为内错角C.∠1与∠3互为同旁内角 D.∠2与∠4互为同位角【答案】D【分析】本题考查了同位角,内错角,同旁内角和邻补角,根据同位角,内错角,同旁内角和邻补角的概念判断即可.【详解】解:A、∠1和∠2是同位角,故A不符合题意;B、∠3与∠4不是内错角,故B不符合题意;C、∠1与∠3不是同旁内角,故C不符合题意;D、∠2与∠4互为同位角,故D符合题意;故选:D.11.(2024七年级上·全国·专题练习)下列说法不正确的是()A.∠1和∠5是同旁内角 B.∠1和∠4是内错角C.∠3和∠4是同位角 D.∠1和∠2是同旁内角【答案】D【分析】本题主要考查了同位角,内错角,同旁内角的定义,熟练掌握同位角,内错角,同旁内角的定义是解题的关键.根据同位角,内错角,同旁内角的定义逐一判断即可.【详解】解:A.∠1和∠5是同旁内角,说法正确,选项不符合题意;B.∠1和∠4是内错角,说法正确,选项不符合题意;C.∠3和∠4是同位角,说法正确,选项不符合题意;D.∠1和∠2互为补角,说法错误,选项符合题意;故选:D.12.(2024七年级下·云南·专题练习)如图,∠1的同位角是,∠2的内错角,∠A的同旁内角是.【答案】∠B∠A∠ACB和∠B【分析】本题主要考查了三线八角,涉及同位角、内错角、同旁内角的定义有关知识,数形结合,根据同位角、内错角、同旁内角的定义判断即可得到答案,熟记同位角、内错角、同旁内角的定义,识别图形是解决问题的关键.【详解】解:如图所示:∠1的同位角是∠B,∠2的内错角是∠A,∠A的同旁内角是∠ACB和∠B,故答案为:∠B;∠A;∠ACB和∠B.类型五、找出同位角、内错角、同旁内角13.(2024七年级上·全国·专题练习)分别指出下列图中的同位角、内错角、同旁内角.【答案】图1中同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8;内错角有:∠3与∠6,∠4与∠5;同旁内角有:∠3与∠5,∠4与∠6;图2中同位角有:∠1与∠3,∠2与∠4;同旁内角有:∠3与∠2.【分析】本题考查了同位角、内错角,同旁内角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.根据两直线被第三条直线所截,两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角是同位角,可得同位角;两个角在截线的两侧,被截两直线的中间的角是内错角,可得内错角;两个角在截线的同侧,被截两直线的中间的角是同旁内角,可得同旁内角.【详解】解:如图1,同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8;内错角有:∠3与∠6,∠4与∠5;同旁内角有:∠3与∠5,∠4与∠6.如图2,同位角有:∠1与∠3,∠2与∠4;同旁内角有:∠3与∠2.14.(2024七年级上·全国·专题练习)在直角三角形ABC中,∠C=90°,DE⊥AC于点E,交AB于点D.

(1)试指出直线BC、DE被直线AB所截时,∠3的同位角、内错角和同旁内角;(2)试说明∠1=∠2=∠3.(提示:三角形内角和是180°)【答案】(1)∠1,∠2,∠4(2)见解析【分析】本题考查的是同位角,内错角,同旁内角的含义,对顶角的性质,三角形的内角和定理的应用;(1)由直线BC、DE被直线AB所截时,结合同位角,内错角,同旁内角的含义,可得答案;(2)由三角形的内角和定理可得:∠1+∠A+∠AED=180°,∠3+∠A+∠C=180°.再证明∠AED=90°,可得∠1=∠3,结合∠1=∠2,从而可得结论.【详解】(1)解:直线BC、DE被直线AB所截时,∠3的同位角为∠1,∠3的内错角为∠2;∠3的同旁内角为∠4;(2)解:∵∠1+∠A+∠AED=180°,∠3+∠A+∠C=180°.又∵DE⊥AC,∴∠AED=90°.又∵∠C=90°,∴∠1=∠3.∵∠1=∠2,∴∠1=∠2=∠3.15.(23-24七年级上·全国·单元测试)找出图中与∠1是同位角、内错角、同旁内角的所有角.【答案】∠1的同位角:∠GDF,∠GEF,∠FBC,∠FCH;∠1的内错角:∠MDA,∠NED,∠ABP,∠ACQ;∠1的同旁内角:∠ADF,∠AEF,∠ABF,∠ACD【分析】此题主要考查了三线八角,关键是掌握同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行分析即可.【详解】解:∠1是同位角:∠GDF,∠GEF,∠FBC,∠FCH;∠1的内错角:∠MDA,∠NED,∠ABP,∠ACQ;∠1的同旁内角:∠ADF,∠DEF,∠ABF,∠ACD.类型六、求同位角、内错角、同旁内角的度数16.(2024七年级上·全国·专题练习)如图,直线AB,CD被EF所截,交点分别为G,F,(1)试确定CD与EF的位置关系,并说明理由;(2)求∠CFG的同位角、内错角、同旁内角的度数.【答案】(1)CD⊥EF,见解析(2)同位角120度,内错角120度,同旁内角60度【分析】本题考查了垂直的定义,邻补角的定义,同位角、内错角、同旁内角的定义,以及对顶角和邻补角的性质的计算,是基础知识,比较简单.(1)根据垂线的定义,结合平角与∠CFG=∠DFG,可以得到∠CFG=∠DFG=90°,由此确定CD与EF的位置关系;(2)根据∠CFG=∠DFG=34∠AGE=90°可得∠AGE=120°【详解】(1)解:CD⊥EF.理由:∵CD是直线,∴∠CFG+∠DFG=180°.∵∠CFG=∠DFG,∴∠CFG=∠DFG=90°,∴CD⊥EF.(2)解:∵∠CFG=∠DFG=3∴∠AGE=120°,∴∠CFG的同位角∠AGE=120°,内错角∠BGF=∠AGE=120°,同旁内角∠AGF=180°−∠AGE=60°.17.(24-25七年级上·全国·课后作业)两条直线被第三条直线所截,∠1与∠2是同旁内角,∠3与∠2是内错角.(1)画出示意图;(2)若∠1=3∠2,∠2=3∠3,求∠1、∠2的度数.【答案】(1)见解析(2)∠1=162°,∠2=54°【分析】本题考查同旁内角、内错角、角度运算,理解同旁内角、内错角的概念并正确画出图形是解答的关键.(1)根据同旁内角、内错角的定义画图即可;(2)根据所给角的关系,结合平角是180°列方程求得∠2即可.【详解】(1)解:如答图所示.(2)解:因为∠1=3∠2,∠2=3∠3,所以∠3=1因为∠1+∠3=180°,所以3∠2+13∠2=180°所以∠2=54°,所以∠1=54°×3=162°.类型七、同位角、内错角、同旁内角的对数问题18.(23-24七年级下·全国·假期作业)如图(1),三条直线两两相交,且不共点,则图中同旁内角有对:如图(2),四条直线两两相交,任三条直线不经过同一点,则图中的同旁内角有对.【答案】624【分析】本题考查了同旁内角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.根据同旁内角的定义即可求得此题.【详解】解:图(1)中∠1与∠2,∠3与∠4,∠8与∠9,∠5与∠6,∠5与∠7,∠7与∠6,共6对同旁内角;根据图(1)可知,图(2)中AB、CD、EF组成的图形中共有6对同旁内角;AB、CD、MN组成的图形中共有6对同旁内角;AB、MN、EF组成的图形中共有6对同旁内角;MN、CD、EF组成的图形中共有6对同旁内角;∴图(2)中同旁内角共有4×6=24对,故答案为:6;24.19.(23-24七年级上·全国·单元测试)如图,已知与∠1构成同位角的角的个数是m,与∠2构成内错角的角的个数是n,求m+n的值.【答案】3【分析】本题考查了同位角和内错角,同位角是两直线被第三条直线所截,所形成的角位置相同;两直线被第三条直线所截,所形成的角在两条直线的中间,第三条直线的两侧,是内错角.根据同位角特点,可得同位角的个数,根据内错角特点,可得内错角的个数,根据有理数的加法,可得计算结果.【详解】由题图知∠1与∠E是同位角,∠2与∠BDF是内错角,∠2与∠ADF是内错角,∴m=1,n=2,∴m+n=1+2=3.20.(23-24七年级下·陕西西安·阶段练习)将复杂的平面图形分解成若干个基本图形是解决疑难问题的法宝.在学习几何的过程中,多总结、归纳几何基本图形,一定会得到意想不到的收获.数学大师罗增儒在著作《数学解题学引论》中也专门阐述了把复杂的数学问题分解为基本问题来研究,化繁为简,化整为零这是一种常见的数学解题思想.

(1)在《相交线与平行线》这章中,有一个基本图形:三线八角(如图1),图1中,有______对同位角,______对同旁内角,______对内错角;(2)如图2,平面内三条直线两两相交,图2中,有______对同位角,______对同旁内角,______对内错角;(3)如图3,平行直线AB、CD与相交直线EF、GH相交,则图中同旁内角共有______对;(4)如图,AD∥EG∥BC,AC∥【答案】(1)4,2,2;(2)12,6,6;(3)16;(4)5.【分析】(1)根据同位角,同旁内角,内错角的定义逐一找出可得答案;(2)根据同位角,同旁内角,内错角的定义逐一找出可得答案;(3)借助(1)(2)中的两个基本模型可得结论;(4)根据平行线的性质,逐一找出与∠1相等的角可得答案.本题主要考查了相交线,同位角,内错角,同旁内角,平行线的性质等数学常识,熟练掌握知识点的应用是解题的关键.【详解】(1)解:如图1,

图中的同位角有:∠1与∠5,∠2与∠7,∠3与∠6,∠4与∠8;内错角有:∠2与∠6,∠4与∠5;同旁内角有:∠2与∠5,∠4与∠6;故答案为:4,2,2;(2)解:如图2,

图中的同位角有:∠1与∠8,∠2与∠5,∠4与∠7,∠3与∠6,∠10与∠5,∠6与∠11,∠7与∠12,∠8与∠9,∠1与∠12,∠2与∠9,∠3与∠10,∠4与∠11;内错角有:∠2与∠7,∠3与∠8,∠3与∠12,∠4与∠9,∠7与∠10,∠6与∠9;同旁内角有:∠2与∠8,∠4与∠12,∠3与∠9,∠3与∠7,∠6与∠10,∠7与∠9;故答案为:12,6,6;(3)解:图3中共有(1)型的基本图形2个,(2)型的基本图形2个,由以上的结论可知,图3中共有同旁内角:2×2+2×6=16.故答案为:16.(4)解:∵AD∥∴∠1=∠GEF,∠GEF=∠AHE=∠DAC,∠ACB=∠GHC.∵AC∥∴∠1=∠ACB,∴∠1=∠GEF=∠AHE=∠DAC=∠ACB=∠GHC,故答案为:5.一、单选题1.(24-25七年级上·河南鹤壁·阶段练习)如图,在所标识的角中,下列说法不正确的是(

)A.∠1与∠5是内错角 B.∠3与∠5是对顶角C.∠1与∠4是同位角 D.∠1与∠2是同旁内角【答案】C【分析】根据内错角,对顶角,同位角,同旁内角的定义解答即可.【详解】解:A.∠1与∠5是内错角,本选项正确,不符合题意,

B.∠3与∠5是对顶角,本选项正确,不符合题意,C.∠1与∠4不是同位角,本选项错误,符合题意,

D.∠1与∠2是同旁内角,本选项正确,不符合题意,故选:C.【点睛】本题考查了内错角,对顶角,同位角,同旁内角的定义,正确理解定义是解题的关键.2.(22-23七年级上·广东河源·期末)如图,∠1的同位角共有(

)A.1个 B.2个 C.3个 D.4个【答案】C【分析】本题考查了同位角的定义据五条直线相交关系分别讨论:l1、l2被b所截,与∠1成同位角的角的有1个;a、b被l2所截,与∠1成同位角的角的有1个;c、b【详解】解:据同位角定义,l1、l2被b所截,与a、b被l2所截,与∠1成同位角的角的有∠3c、b被l2所截,与∠1成同位角的角的有∠4故选:C.3.(23-24七年级下·辽宁沈阳·期末)科技是国家强盛之基,创新是民族进步之魂.近些年来,我国的航空事业不断发展,在如左图所示的飞机中抽象出右图的数学图形,在右图中,与∠1构成同旁内角的是(

)A.∠2 B.∠3 C.∠4 D.∠5【答案】C【分析】本题主要考查同旁内角,根据同旁内角的定义即可作答.【详解】解:根据同旁内角的定义可知,∠1与∠故选:C.4.(23-24七年级下·河南驻马店·期末)如图所示,∠ABC的一边和∠DEF的一边相交于一点,下列说法错误的是(

).A.∠B和∠4是同位角 B.∠B和∠1是同旁内角C.∠E和∠3是内错角 D.∠B和∠E是同位角【答案】D【分析】本题主要考查了同位角、内错角、同旁内角的定义,利用同位角以及内错角和同旁内角的定义分别分析得出即可.【详解】解:A、∠B和∠4是同位角是正确的,不合题意;B、∠B和∠1是同旁内角,正确,不合题意;C、∠E和∠3是内错角,正确,不合题意;D、∠B和∠E不是同位角,符合题意;故选:D.5.(23-24七年级下·重庆秀山·期末)如图,直线a,b被直线c所截,则(

A.∠1与∠2是对顶角 B.∠1与∠2是内错角C.∠1与∠3是内错角 D.∠1与∠3是同位角【答案】D【分析】本题考查了同位角、内错角以及对顶角,根据各自的定义判断即可.两条直线被第三条直线所截形成的角中,若两个角都在两直线的同一方,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;两条直线被第三条直线所截形成的角中,若两个角都在两直线之间,并且在第三条直线(截线)的两侧,则这样一对角叫做内错角,由此即可判断【详解】解:A.∠1与∠2不是对顶角,原说法错误,故该选项不符合题意;B.∠1与∠2不是内错角,原说法错误,故该选项不符合题意;C.∠1与∠3是同位角,原说法错误,故该选项不符合题意;D.∠1与∠3是同位角,原说法正确,故该选项符合题意;故选:D.6.(23-24七年级下·湖北随州·期末)如图,∠1与∠2不是同位角的图形有(

)A. B. C. D.【答案】D【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,根据同位角的概念解答即可.本题考查同位角,解题的关键是明确题意,熟练掌握三线八角的定义.【详解】解:A、∠1与∠2是同位角,故此选项不符合题意;B、∠1与∠2是同位角,故不符合题意;C、∠1与∠2是同位角,故不符合题意;D、∠1与∠2不是两条直线被第三条直线所截形成的角,故此选项符合题意;故选:D.7.(23-24七年级下·辽宁沈阳·阶段练习)在下列图形中,∠1和∠2是同位角的是(

)A. B. C. D.【答案】C【分析】本题考查了同位角的定义,掌握两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角是解题的关键.根据同位角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,由此即可判断.【详解】解:∠1和∠2是同位角的是C选项,故选:C.8.(23-24七年级下·山西吕梁·期中)量角器每条刻度线上都标记着两个角度,如70°和110°标记在同一刻度线上,那么同一刻度上的这两个角度表示的角是一对(

)A.对顶角 B.同位角 C.邻补角 D.同旁内角【答案】C【分析】本题考查了角的概念,对顶角、邻补角、同位角、同旁内角的概念,熟练掌握这些概念是解题的关键.根据对顶角、邻补角、同位角、同旁内角的概念,对选项进行一一分析,排除错误答案.【详解】A、对顶角指一个角的两边分别是另一个角两边的反向延长线,故错误;B、同位角指两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,故错误;C、邻补角指两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,故正确;D、同旁内角指两条直线被第三条直线所截在截线同旁,且在被截线之内的两角,故错误.故选:C.二、填空题9.(23-24七年级上·全国·单元测试)如图,∠1的同位角是,∠B的内错角是,与是同旁内角.

【答案】∠B∠3∠B∠4【分析】本题主要考查了三线八角,涉及同位角、内错角、同旁内角的定义有关知识,数形结合,根据同位角、内错角、同旁内角的定义判断即可得到答案,熟记同位角、内错角、同旁内角的定义,识别图形是解决问题的关键.【详解】解∶如图,∠1的同位角是∠B,∠B的内错角是∠3,∠B与∠4是同旁内角.

故答案为∶∠B;∠3;∠B;∠4.10.(23-24七年级下·全国·单元测试)根据图形填空:(1)若直线ED,BC被直线AB所截,则∠1和是同位角;(2)若直线ED,BC被直线AF所截,则∠3和是内错角;(3)∠1和∠3是直线AB,AF被直线所截构成的角;【答案】∠2∠4DE内错【分析】本题考查了同位角和内错角的定义,解题的关键是掌握同位角和内错角的定义.(1)根据同位角的定义求解即可;(2)根据内错角的定义求解即可;(3)根据内错角的定义求解即可.【详解】解:(1)直线ED,BC被直线AB所截,则∠1和∠2是同位角;(2)直线ED,BC被直线AF所截,则∠3和∠4是内错角;(3)∠1和∠3是直线AB,AF被直线DE所截构成的内错角;故答案为:∠2,∠4,DE,内错.11.(23-24七年级下·山东聊城·开学考试)如图,从已经标出的五个角中,(1)直线AC,BD被直线ED所截,∠1与是同位角;(2)直线AB,CD被直线AC所截,∠1与是内错角;(3)直线AB,CD被直线BD所截,∠2与是同旁内角.【答案】∠2∠4∠3【分析】此题主要考查了三线八角,关键是掌握同位角的边构成F形,内错角的边构成Z形,同旁内角的边构成U形.根据两条直线被第三条直线所截,所形成的角中,两角在两条直线的中间,第三条直线的两旁,可得内错角,两角在两直线的中间,第三条直线的同侧,可得同旁内角,两角在两条直线的同侧,第三条直线的同侧,可得同位角.【详解】解:(1)直线AC,BD被直线ED所截,∠1与是∠2同位角;(2)直线AB,CD被直线AC所截,∠1与∠4是内错角;(3)直线AB,CD被直线BD所截,∠2与∠3是同旁内角.故答案为:∠2,∠4,∠312.(23-24七年级下·广东东莞·期末)如图,直线a,b被直线c所截,则∠4的同旁内角是.【答案】∠5【分析】本题考查了同旁内角的概念:两条直线被第三条直线所截,两个角都在截线的同旁,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.根据同旁内角的概念即可得到∠5与∠4是同旁内角.【详解】解:∵∠5与∠4都在直线a、b之间,且它们都在直线c的同旁,∴∠4的同旁内角是∠5.故答案为:∠5.13.(22-23七年级下·山东聊城·期中)如图,三角形ABC的边BC在直线MD上,直线HE平行于MD分别交AB,AC于点G,F,则图中共有内错角的对数为.【答案】10对【分析】本题考查内错角,关键是掌握内错角的定义.两条直线被第三条直线所截形成的角中,若两个角都在两直线之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角,由此即可得到答案.【详解】解:内错角有∠BGH和∠CBG,∠BGF和∠MBG,∠EFC和∠BCF,∠ACD与∠CFH,∠A和∠AGH,∠A和∠AFE,∠AFG和∠BGF,∠AGF和∠CFG,∠A和∠ACD,∠A和∠ABM,∴图中共有内错角的对数为10对.故答案为:10对.14.(23-24七年级下·甘肃武威·阶段练习)在如图所示的6个角中,同位角有对,它们是;内错角有对,它们是;同旁内角有对,它们是.【答案】2∠1与∠6,∠3与∠52∠2与∠3,∠4与∠64∠1与∠2,∠2与∠4,∠4与∠5,∠1与∠5【分析】本题主要考查了同位角,内错角,同旁内角,根据同位角,内错角,同旁内角的定义解题即可.同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角【详解】解:在如图所示的6个角中,同位角有2对,它们是∠1与∠6,∠3与∠5,内错角有2对,它们是∠2与∠3,∠4与∠6;同旁内角有4对,它们是∠1与∠2,∠2与∠4,∠4与∠5,∠1与∠5.故答案为:2;∠1与∠6,∠3与∠5;2;∠2与∠3,∠4与∠6;4;∠1与∠2,∠2与∠4,∠4与∠5,∠1与∠5.15.(23-24七年级下·山东聊城·阶段练习)如图所示的八个角中,同位角有对,内错角有对,同旁内角有对.【答案】344【分析】本题主要考查了三线八角,同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角分别进行分析可得答案.【详解】解:同位角有∠1与∠7,∠2与∠8,∠4与∠6,共3对,内错角:∠3与∠4,∠1与∠5,∠2与∠6,∠4与∠8,共4对;同旁内角:∠1与∠6,∠2与∠5,∠2与∠4,∠4与∠5,共4对;故答案为:3;4;4.三、解答题16.(23-24七年级下·山东菏泽·期中)如图所示,已知∠1=115°,∠2=65°,∠3=95°36'.(1)图中所有角中(包含没有标数字的角),共有几对内错角;(2)求∠4的大小.【答案】(1)内错角共有8对(2)∠4=84°2【分析】本题考查的是内错角的定义,平行线的判定与性质,熟记平行线的判定与性质是解本题的关键.(1)根据内错角的含义可得答案;(2)先求解∠2=65°,可得∠2=∠6,证明a∥【详解】(1)解:如图,标注角如下:内错角有:∠3与∠6;∠1与∠9;∠8与∠2;∠11与∠12;∠6与∠7;∠5与∠11;∠9与∠4;∠8与∠10;∴内错角共有8对;(2)解:∵∠1=115°,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论