福建省二校2026届高二上数学期末综合测试模拟试题含解析_第1页
福建省二校2026届高二上数学期末综合测试模拟试题含解析_第2页
福建省二校2026届高二上数学期末综合测试模拟试题含解析_第3页
福建省二校2026届高二上数学期末综合测试模拟试题含解析_第4页
福建省二校2026届高二上数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省二校2026届高二上数学期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,其中e是自然数对数的底数,若,则实数a的取值范围是A. B.C. D.2.抛物线的焦点坐标为()A. B.C. D.3.已知圆,直线,则直线l被圆C所截得的弦长的最小值为()A.2 B.3C.4 D.54.已知函数的部分图象如图所示,且经过点,则()A.关于点对称B.关于直线对称C.为奇函数D.为偶函数5.在空间直角坐标系中,已知,,则MN的中点P到坐标原点О的距离为()A. B.C.2 D.36.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还”,由此推断,最后一句“返回家乡”是“攻破楼兰”的()A.必要条件 B.充分条件C.充要条件 D.既不充分也不必要7.已知公差不为0的等差数列中,,且,,成等比数列,则其前项和取得最大值时,的值为()A.12 B.13C.12或13 D.13或148.二次方程的两根为2,,那么关于的不等式的解集为()A.或 B.或C. D.9.直线y=x+1与圆x2+y2=1的位置关系为A.相切B.相交但直线不过圆心C.直线过圆心D.相离10.下列关于函数及其图象的说法正确的是()A.B.最小正周期为C.函数图象的对称中心为点D.函数图象的对称轴方程为11.在空间直角坐标系中,若,,则点B的坐标为()A.(3,1,﹣2) B.(-3,1,2)C.(-3,1,-2) D.(3,-1,2)12.若直线先向右平移一个单位,再向下平移一个单位,然后与圆相切,则c的值为()A.8或-2 B.6或-4C.4或-6 D.2或-8二、填空题:本题共4小题,每小题5分,共20分。13.若在上是减函数,则实数a的取值范围是_________.14.已知,分别是椭圆和双曲线的离心率,,是它们的公共焦点,M是它们的一个公共点,且,则的最大值为______15.已知正三棱柱中,底面积为,一个侧面的周长为,则正三棱柱外接球的表面积为______.16.已知等比数列满足,,公比,则的前2021项和______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的展开式中,只有第6项的二项式系数最大(1)求n的值;(2)求展开式中含的项18.(12分)平面直角坐标系xOy中,点,,点M满足.记M的轨迹为C.(1)说明C是什么曲线,并求C的方程;(2)已知经过的直线l与C交于A,B两点,若,求.19.(12分)已知抛物线C:上一点到焦点F的距离为2(1)求实数p的值;(2)若直线l过C的焦点,与抛物线交于A,B两点,且,求直线l的方程20.(12分)如图所示,、分别为椭圆的左、右焦点,A,B为两个顶点,已知椭圆C上的点到、两点的距离之和为4.(1)求a的值和椭圆C的方程;(2)过椭圆C的焦点作AB的平行线交椭圆于P,Q,求的面积21.(12分)设双曲线的左、右焦点分别为,,且,一条渐近线的倾斜角为60°(1)求双曲线C的标准方程和离心率;(2)求分别以,为左、右顶点,短轴长等于双曲线虚轴长的椭圆的标准方程22.(10分)已知平面内两点,,动点P满足(1)求动点P的轨迹方程;(2)过定点的直线l交动点P的轨迹于不同的两点M,N,点M关于y轴对称点为,求证直线过定点,并求出定点坐标

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用函数的奇偶性将函数转化为f(M)≤f(N)的形式,再利用单调性脱去对应法则f,转化为一般的二次不等式求解即可【详解】由于,,则f(﹣x)=﹣x3+e﹣x﹣ex=﹣f(x),故函数f(x)为奇函数故原不等式f(a﹣1)+f(2a2)≤0,可转化为f(2a2)≤﹣f(a﹣1)=f(1﹣a),即f(2a2)≤f(1﹣a);又f'(x)=3x2﹣cosx+ex+e﹣x,由于ex+e﹣x≥2,故ex+e﹣x﹣cosx>0,所以f'(x)=3x2﹣cosx+ex+e﹣x≥0恒成立,故函数f(x)单调递增,则由f(2a2)≤f(1﹣a)可得,2a2≤1﹣a,即2a2+a﹣1≤0,解得,故选B【点睛】本题考查了函数的奇偶性和单调性的判定及应用,考查了不等式的解法,属于中档题2、C【解析】先把抛物线方程化为标准方程,求出即可求解【详解】由,有,可得,抛物线的焦点坐标为故选:C3、C【解析】直线l过定点D(1,1),当时,弦长最短.【详解】由,圆心,半径,,由,故直线l过定点,∵,故D在圆C内部,直线l始终与圆相交,当时,直线l被圆截得的弦长最短,,弦长=.故选:C.4、D【解析】根据图象求得函数解析式,结合三角函数的图象与性质,逐项判定,即可求解.【详解】由题意,可得,根据图形走势,可得,解得,令,可得,所以,由,所以A不正确;由,可得不是函数的对称轴,所以B不正确;由,此时函数为非奇非偶函数,所以C不正确;由为偶函数,所以D正确.故选:D.5、A【解析】利用中点坐标公式及空间中两点之间的距离公式可得解.【详解】,,由中点坐标公式,得,所以.故选:A6、B【解析】由题意,“不破楼兰”可以推出“不还”,但是反过来“不还”的原因有多种,按照充分条件、必要条件的定义即可判断【详解】由题意,“不破楼兰终不还”即“不破楼兰”是“不还”的充分条件,即“不破楼兰”可以推出“不还”,但是反过来“不还”的原因有多种,比如战死沙场;即如果已知“还”,一定是已经“破楼兰”,所以“还”是“破楼兰”的充分条件故选:B7、C【解析】设等差数列的公差为q,根据,,成等比数列,利用等比中项求得公差,再由等差数列前n项和公式求解.【详解】设等差数列的公差为q,因为,且,,成等比数列,所以,解得,所以,所以当12或13时,取得最大值,故选:C8、B【解析】根据,确定二次函数的图象开口方向,再由二次方程的两根为2,,写出不等式的解集.【详解】因为二次方程的两根为2,,又二次函数的图象开口向上,所以不等式的解集为或,故选:B9、B【解析】求出圆心到直线的距离d,与圆的半径r比较大小即可判断出直线与圆的位置关系,同时判断圆心是否在直线上,即可得到正确答案解:由圆的方程得到圆心坐标(0,0),半径r=1则圆心(0,0)到直线y=x+1的距离d==<r=1,把(0,0)代入直线方程左右两边不相等,得到直线不过圆心所以直线与圆的位置关系是相交但直线不过圆心故选B考点:直线与圆的位置关系10、D【解析】化简,利用正弦型函数的性质,依次判断,即可【详解】∵∴,A选项错误;的最小正周期为,B选项错误;令,则,故函数图象的对称中心为点,C选项错误;令,则,所以函数图象的对称轴方程为,D选项正确故选:D11、C【解析】利用点的坐标表示向量坐标,即可求解.【详解】设,,,所以,,,解得:,,,即.故选:C12、A【解析】求出平移后的直线方程,再利用直线与圆相切并借助点到直线距离公式列式计算作答.【详解】将直线先向右平移一个单位,再向下平移一个单位所得直线方程为,因直线与圆相切,从而得,即,解得或,所以c的值为8或-2.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据导数的性质,结合常变量分离法进行求解即可.【详解】,因为在上是减函数,所以在上恒成立,即,当时,的最小值为,所以,故答案为:14、【解析】利用椭圆、双曲线的定义以及余弦定理找到的关系,然后利用三角换元求最值即可.【详解】解析:设椭圆的长半轴为a,双曲线的实半轴为,半焦距为c,设,,,因为,所以由余弦定理可得,①在椭圆中,,①化简为,即,②在双曲线中,,①化简为,即,③联立②③得,,即,记,,,则,当且仅当,即,时取等号故答案为:.15、【解析】首先由条件求出底面边长和高,然后设、分别为上、下底面的的中心,连接,设的中点为,则点为正三棱柱外接球的球心,然后求出的长度即可.【详解】如图所示,设底面边长为,则底面面积为,所以,因此等边三角形的高为:,因为一个侧面的周长为,所以设、分别为上、下底面的的中心,连接,设的中点为则点为正三棱柱外接球的球心,连接、则在直角三角形中,即外接球的半径为,所以外接球的表面积为,故答案为:【点睛】关键点睛:求几何体的外接球半径的关键是根据几何体的性质找出球心的位置.16、【解析】根据等比数列的求和公式求解即可.【详解】因为等比数列满足,,公比,所以,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)10;(2);【解析】(1)利用二项式系数的性质即可求出的值;(2)求出展开式的通项公式,然后令的指数为即可求解【小问1详解】∵的展开式中,只有第6项的二项式系数最大,∴展开后一共有11项,则,解得;【小问2详解】二项式的展开式的通项公式为,令,解得,∴展开式中含的项为18、(1)C是以点,为左右焦点的椭圆,(2)【解析】(1)根据椭圆的定义即可得到答案.(2)当垂直于轴时,,舍去.当不垂直于轴时,可设,再根据题意结合韦达定理求解即可.【小问1详解】因为,,所以C是以点,为左右焦点的椭圆.于是,,故,因此C的方程为.【小问2详解】当垂直于轴时,,,舍去.当不垂直于轴时,可设,代入可得.因为,设,,则,.因为,所以.同理.因此.由可得,,于是.根据椭圆定义可知,于是.19、(1)2(2)或【解析】(1)根据抛物线上的点到焦点与准线的距离相等可得到结果(2)通过联立抛物线与直线方程利用韦达定理求解关系式即可得到结果【小问1详解】抛物线焦点为,准线方程为,因为点到焦点F距离为2,所以,解得【小问2详解】抛物线C的焦点坐标为,当斜率不存在时,可得不满足题意,当斜率存在时,设直线l的方程为联立方程,得,显然,设,,则,所以,解得所以直线l的方程为或20、(1)a=2,(2)【解析】(1)由题意可得a=2,,求出,从而可求得椭圆方程,(2)由题意可求出的坐标,则可求出直线PQ的方程,然后将直线方程与椭圆方程联立,消去,利用根与系数的关系,求出的值,从而可求出的值【小问1详解】由椭圆定义可得2a=4,所以a=2,又因点在椭圆C上,所以,解得:,所以a的值为2,椭圆C的方程为【小问2详解】由椭圆的方程可得,,,所以,所以直线PQ的方程为,设,,由可得,所以,,所以,所以21、(1),2(2)【解析】(1)结合,联立即得解;(2)由题意,即得解.【详解】(1)由题意,又解得:故双曲线C的标准方程为:,离心率为(2)由题意椭圆的焦点在轴上,设椭圆方程为故即椭圆方程为:22、(1)(2)证明见解析,定点坐标为【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论