版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省兰州市甘肃一中2026届高二数学第一学期期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如果,那么下面一定成立的是()A. B.C. D.2.数列的通项公式是()A. B.C. D.3.已知,,若不等式恒成立,则正数的最小值是()A.2 B.4C.6 D.84.若数列的前n项和(n∈N*),则=()A.20 B.30C.40 D.505.如图,在正方体中,点E是上底面的中心,则异面直线与所成角的余弦值为()A. B.C. D.6.已知双曲线的离心率为,则双曲线C的渐近线方程为()A. B.C. D.7.已知定义在R上的函数满足,且有,则的解集为()A B.C. D.8.已知数列满足,且,为其前n项的和,则()A. B.C. D.9.直线x﹣y+3=0的倾斜角是()A.30° B.45°C.60° D.150°10.已知双曲线的左右焦点分别为、,过作的一条渐近线的垂线,垂足为,若的面积为,则的渐近线方程为A. B.C. D.11.若方程表示双曲线,则的取值范围是()A.或 B.C.或 D.12.命题“,”否定是()A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.已知四面体中,,分别在,上,且,,若,则________.14.在正方体中,二面角的大小为__________(用反三角表示)15.如图,在四棱锥中,平面,底面为矩形,分别为的中点,连接,则点到平面的距离为__________.16.已知三角形OAB顶点,,,则过B点的中线长为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在正方体中,E为的中点(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值18.(12分)已知点A(1,2)在抛物线C∶上,过点A作两条直线分别交抛物线于点D,E,直线AD,AE的斜率分别为kAD,kAE,若直线DE过点P(-1,-2)(1)求抛物线C的方程;(2)求直线AD,AE的斜率之积.19.(12分)已知三角形的内角所对的边分别为,且C为钝角.(1)求cosA;(2)若,,求三角形的面积.20.(12分)数字人民币是由央行发行的法定数字货币,它由指定运营机构参与运营并向公众兑换,与纸钞和硬币等价.截至2021年6月30日,数字人民币试点场景已超132万个,覆盖生活缴费、餐饮服务、交通出行、购物消费、政务服务等领域.为了进一步了解普通大众对数字人民币的感知以及接受情况,某机构进行了一次问卷调查,结果如下:学历小学及以下初中高中大学专科大学本科硕士研究生及以上不了解数字人民币35358055646了解数字人民币406015011014025(1)如果将高中及高中以下的学历称为“低学历”,大学专科及以上学历称为“高学历”,根据所给数据,完成列联表.低学历高学历合计不了解数字人民币了解数字人民币合计(2)若从低学历的被调查者中随机抽取2人进行进一步调查,求被选中的2人中至少有1人对数字人民币不了解的概率:(3)根据列联表,判断是否有的把握认为“是否了解数字人民币”与“学历高低”有关?0.0500.0100.001k3.8416.63510.828附:.21.(12分)如图是一个正三棱柱(以为底面)被一平面所截得到的几何体,截面为ABC.已知,,M为AB中点.(1)证明:平面;(2)求此几何体的体积.22.(10分)已知双曲线C:(a>0,b>0)的离心率为,实轴长为2.(1)求双曲线的焦点到渐近线的距离;(2)若直线y=x+m被双曲线C截得的弦长为,求m的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据不等式的基本性质,以及特例法和作差比较法,逐项计算,即可求解.【详解】对于A中,当时,,所以不正确;对于B中,因为,根据不等式的性质,可得,对于C中,由,可得可得,所以,所以正确;对于D中,由,可得,则,所以,所以不正确.故选:C.2、C【解析】根据数列前几项,归纳猜想出数列的通项公式.【详解】依题意,数列的前几项为:;;;……则其通项公式.故选C.【点睛】本小题主要考查归纳推理,考查数列通项公式的猜想,属于基础题.3、B【解析】由基本不等式求出的最小值,只需最小值大于等于18,得到关于的不等式,求解,即可得出结论.【详解】,因为不等式恒成立,所以,即,解得,所以.故选:B.【点睛】本题考查基本不等式的应用,考查一元二次不等式的解法,属于基础题.4、B【解析】由前项和公式直接作差可得.【详解】数列的前n项和(n∈N*),所以.故选:B.5、B【解析】建立空间直角坐标系,利用向量夹角求解.【详解】以为原点,为轴正方向建立空间直角坐标系如图所示,设正方体棱长为2,所以,所以异面直线与所成角的余弦值为.故选:B6、B【解析】根据a的值和离心率可求得b,从而求得渐近线方程.【详解】由双曲线的离心率为,知,则,即有,故,所以双曲线C的渐近线方程为,即,故选:B.7、A【解析】构造,应用导数及已知条件判断的单调性,而题设不等式等价于即可得解.【详解】设,则,∴在R上单调递增.又,则.∵等价于,即,∴,即所求不等式的解集为.故选:A8、B【解析】根据等比数列的前n项和公式即可求解.【详解】由题可知是首项为2,公比为3的等比数列,则.故选:B.9、C【解析】先求斜率,再求倾斜角即可【详解】解:直线的斜截式方程为,∴直线的斜率,∴倾斜角,故选:C【点睛】本题主要考查直线的倾斜角与斜率,属于基础题10、D【解析】求得,根据的面积列方程,由此求得,进而求得双曲线的渐近线方程.【详解】依题意,双曲线的一条渐近线为,则,所以,所以,所以.所以双曲线渐近线方程为.故选:D【点睛】本小题主要考查双曲线渐近线的有关计算,属于中档题.11、A【解析】由和的分母异号可得【详解】由题意,解得或故选:A12、D【解析】根据含有量词的命题的否定即可得出结论.【详解】命题为全称命题,则命题的否定为:,.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】连接,根据题意,结合空间向量加减法运算求解即可.【详解】解:连接∵四面体中,,分别在,上,且,∴∴∴.故答案为:14、【解析】作出二面角的平面角,并计算出二面角的大小.【详解】设,画出图像如下图所示,由于,所以平面,所以,所以是二面角的平面角.所以.所以二面角的大小为.故答案为:15、【解析】利用转化法,根据线面平行的性质,结合三棱锥的体积等积性进行求解即可.【详解】设是的中点,连接,因为是的中点,所以,因为平面,平面,所以平面,因此点到平面的距离等于点到平面的距离,设为,因为平面,所以,,于是有,底面为矩形,所以有,,因为平面,所以,于是有:,由余弦定理可知:cos∠PEC=所以,因此,,因为,所以,故答案为:16、【解析】先求出中点坐标,再由距离公式得出过B点的中线长.【详解】由中点坐标公式可得中点,则过B点的中线长为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)证明见解析;(Ⅱ).【解析】(Ⅰ)证明出四边形为平行四边形,可得出,然后利用线面平行的判定定理可证得结论;也可利用空间向量计算证明;(Ⅱ)可以将平面扩展,将线面角转化,利用几何方法作出线面角,然后计算;也可以建立空间直角坐标系,利用空间向量计算求解.【详解】(Ⅰ)[方法一]:几何法如下图所示:在正方体中,且,且,且,所以,四边形为平行四边形,则,平面,平面,平面;[方法二]:空间向量坐标法以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,设正方体的棱长为,则、、、,,,设平面的法向量为,由,得,令,则,,则.又∵向量,,又平面,平面;(Ⅱ)[方法一]:几何法延长到,使得,连接,交于,又∵,∴四边形为平行四边形,∴,又∵,∴,所以平面即平面,连接,作,垂足为,连接,∵平面,平面,∴,又∵,∴直线平面,又∵直线平面,∴平面平面,∴在平面中的射影在直线上,∴直线为直线在平面中的射影,∠为直线与平面所成的角,根据直线直线,可知∠为直线与平面所成的角.设正方体的棱长为2,则,,∴,∴,∴,即直线与平面所成角的正弦值为.[方法二]:向量法接续(I)的向量方法,求得平面平面的法向量,又∵,∴,∴直线与平面所成角的正弦值为.[方法三]:几何法+体积法如图,设的中点为F,延长,易证三线交于一点P因为,所以直线与平面所成的角,即直线与平面所成的角设正方体的棱长为2,在中,易得,可得由,得,整理得所以所以直线与平面所成角的正弦值为[方法四]:纯体积法设正方体的棱长为2,点到平面的距离为h,在中,,,所以,易得由,得,解得,设直线与平面所成的角为,所以【整体点评】(Ⅰ)的方法一使用线面平行的判定定理证明,方法二使用空间向量坐标运算进行证明;(II)第一种方法中使用纯几何方法,适合于没有学习空间向量之前的方法,有利用培养学生的集合论证和空间想象能力,第二种方法使用空间向量方法,两小题前后连贯,利用计算论证和求解,定为最优解法;方法三在几何法的基础上综合使用体积方法,计算较为简洁;方法四不作任何辅助线,仅利用正余弦定理和体积公式进行计算,省却了辅助线和几何的论证,不失为一种优美的方法.18、(1)(2)【解析】(1)代入点即可求得抛物线方程;(2)联立方程后利用韦达定理求出,,,,然后代入即可求得斜率的积.【小问1详解】解:点A(1,2)在抛物线C∶上故【小问2详解】设直线方程为:联立方程,整理得:由题意及韦达定理可得:,19、(1)(2)【解析】(1)由正弦定理边化角,可求得角的正弦,由同角关系结合条件可得答案.(2)由(1),由余弦定理,求出边的长,进一步求得面积【小问1详解】因为,由正弦定理得因,所以.因为角为钝角,所以角为锐角,所以【小问2详解】由(1),由余弦定理,得,所以,解得或,不合题意舍去,故的面积为=20、(1)列联表答案见解析;(2);(3)没有的把握认为“是否了解数字人民币”与“学历高低”有关.【解析】(1)根据给定表中数据列出列联表作答.(2)利用给定条件结合古典概率公式计算作答.(3)利用(1)中信息求出的观测值,再与临界值表比对作答.【小问1详解】列联表如下:低学历高学历合计不了解数字人民币150125275了解数字人民币250275525合计400400800【小问2详解】由(1)知,被调查者中低学历的有400,其中不了解数字人民币的有150,从400人中任取2人有个基本事件,它们等可能,被选中的2人中至少有1人对数字人民币不了解的事件A有个基本事件,所以被选中的2人中至少有1人对数字人民币不了解的概率.【小问3详解】由(1)知,的观测值为,所以没有的把握认为“是否了解数字人民币”与“学历高低”有关.21、(1)证明见解析(2)【解析】(1)取的中点,连接,,可得四边形为平行四边形,从而可得,然后证明平面,从而可证明.(2)过作截面平面,分别交,于,,连接,作于,由所求几何体体积为从而可得答案.【小问1详解】如图,取的中点,连接,,因为,分别是,的中点.所以且又因为,,所以且,故四边形为平行四边形,所以.因为正三角形,是的中点,所以,又因为平面,所以,又,所以平面又,所以平面.【小问2详解】如图,过作截
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- CCAA - 2023年10月建筑施工领域专业答案及解析 - 详解版(65题)
- 山东省烟台市海阳市2025-2026学年八年级上学期期末生物学试题(含解析)
- 中学学生课外活动管理制度
- 【寒假专项】人教版六年级数学下册《百分数(二)》应用题专项训练(含答案)
- 养老院环境卫生管理制度
- 企业薪酬管理制度
- 统编版(2024)七年级上册历史第四单元 三国两晋南北朝时期:政权分立与民族交融(16-20课)素养提升教案
- 2025年山东省人民检察院招聘聘用制书记员考试真题
- 稀土抛光粉工操作管理测试考核试卷含答案
- 凿岩台车司机创新方法考核试卷含答案
- 物业项目综合服务方案
- 2025-2026学年北京市西城区初二(上期)期末考试物理试卷(含答案)
- 公路工程施工安全技术与管理课件 第09讲 起重吊装
- 企业管理 华为会议接待全流程手册SOP
- 供水企业制度流程规范
- 河南省2025年普通高等学校对口招收中等职业学校毕业生考试语文试题 答案
- 马口铁印铁制罐工艺流程详解课件
- 狼蒲松龄原文及翻译
- 2023初会职称《经济法基础》习题库及答案
- 预应力管桩-试桩施工方案
- GB/T 3500-1998粉末冶金术语
评论
0/150
提交评论