版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省临川实验学校2026届高二上数学期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列中,已知,则()A.36 B.27C.18 D.92.已知函数(其中)的部分图像如图所示,则函数的解析式为()A. B.C. D.3.如图1所示,抛物面天线是指由抛物面(抛物线绕其对称轴旋转形成的曲面)反射器和位于其焦点上的照射器(馈源,通常采用喇叭天线)组成的单反射面型天线,广泛应用于微波和卫星通讯等,具有结构简单、方向性强、工作频带宽等特点.图2是图1的轴截面,,两点关于抛物线的对称轴对称,是抛物线的焦点,是馈源的方向角,记为.焦点到顶点的距离与口径的比为抛物面天线的焦径比,它直接影响天线的效率与信噪比等.若馈源方向角满足,则该抛物面天线的焦径比为()A. B.C. D.24.下列直线中,倾斜角为锐角的是()A. B.C. D.5.若双曲线经过点,且它的两条渐近线方程是,则双曲线的离心率是()A. B.C. D.106.若曲线表示圆,则m的取值范围是()A. B.C. D.7.已知数列中,,则()A. B.C. D.8.酒驾是严重危害交通安全的违法行为.根据国家有关规定:100血液中酒精含量在20~80之间为酒后驾车,80及以上为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1.2,且在停止喝酒以后,他血液中的酒精含量会以每小时20%的速度减少,若他想要在不违法的情况下驾驶汽车,则至少需经过的小时数约为()(参考数据:,)A.6 B.7C.8 D.99.设函数是奇函数的导函数,且,当时,,则不等式的解集为()A. B.C. D.10.在正项等比数列中,,,则()A27 B.64C.81 D.25611.过点,的直线的斜率等于2,则的值为()A.0 B.1C.3 D.412.已知,若,则的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若过点作圆的切线,则切线方程为___________.14.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的中心为原点,焦点,均在轴上,且,的面积为,则的标准方程为______15.已知抛物线的焦点F恰好是椭圆的右焦点,且两条曲线交点的连线过点F,则该椭圆的离心率为____________16.已知关于的不等式恒成立,则实数的取值范围是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设,已知函数(1)若,求函数在处切线的方程;(2)求函数在上的最大值18.(12分)已知双曲线与双曲线的渐近线相同,且经过点.(1)求双曲线的方程;(2)已知双曲线的左右焦点分别为,直线经过,倾斜角为与双曲线交于两点,求的面积.19.(12分)某微小企业员工的年龄分布茎叶图如图所示:(1)求该公司员工年龄的极差和第25百分位数;(2)从该公司员工中随机抽取一位,记所抽取员工年龄在区间内为事件,所抽取员工年龄在区间内为事件,判断事件与是否互相独立,并说明理由;20.(12分)等差数列前n项和为,且(1)求通项公式;(2)记,求数列的前n项和21.(12分)已知点是椭圆上的一点,且椭圆的离心率.(1)求椭圆的标准方程;(2)两动点在椭圆上,总满足直线与的斜率互为相反数,求证:直线的斜率为定值.22.(10分)已知在等差数列中,,(1)求的通项公式;(2)若,求数列的前项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】直接利用等差数列的求和公式及等差数列的性质求解.【详解】解:由题得.故选:B2、B【解析】根据题图有且,结合五点法求参数,即可得的解析式.【详解】由图知:且,则,所以,则,即,又,可得,,则,,又,即有.综上,.故选:B3、B【解析】建立平面直角坐标系,利用题设条件得到得点坐标,代入抛物线方程化简即可求解【详解】建立如图所示的平面直角坐标系,设抛物线的方程为()在中,则所以则所以,所以将代入抛物线方程中得所以或即或(舍)当时,故选:B4、A【解析】先由直线方程找到直线的斜率,再推导出直线的倾斜角即可.【详解】选项A:直线的斜率,则直线倾斜角为,是锐角,判断正确;选项B:直线的斜率,则直线倾斜角为钝角,判断错误;选项C:直线的斜率,则直线倾斜角为0,不是锐角,判断错误;选项D:直线没有斜率,倾斜角为直角,不是锐角,判断错误.故选:A5、A【解析】由已知设双曲线方程为:,代入求得,计算即可得出离心率.【详解】双曲线经过点,且它的两条渐近线方程是,设双曲线方程为:,代入得:,.所以双曲线方程为:..双曲线C的离心率为故选:A6、C【解析】按照圆的一般方程满足的条件求解即可.【详解】或.故选:C.7、D【解析】由数列的递推公式依次去求,直到求出即可.【详解】由,可得,,,故选:D.8、C【解析】根据题意列出不等式,利用指对数幂的互化和对数的运算公式即可解出不等式.【详解】设该驾驶员至少需经过x个小时才能驾驶汽车,则,所以,则,所以该驾驶员至少需经过约8个小时才能驾驶汽车.故选:C9、D【解析】设,则,分析可得为偶函数且,求出的导数,分析可得在上为减函数,进而分析可得上,,在上,,结合函数的奇偶性可得上,,在上,,又由即,则有或,据此分析可得答案【详解】根据题意,设,则,若奇函数,则,则有,即函数为偶函数,又由,则,则,,又由当时,,则在上为减函数,又由,则在上,,在上,,又由为偶函数,则在上,,在上,,即,则有或,故或,即不等式的解集为;故选:D10、C【解析】根据等比数列的通项公式求出公比,进而求得答案.【详解】设的公比为,则(负值舍去),所以.故选:C.11、A【解析】利用斜率公式即求.【详解】由题可得,∴.故选:A12、C【解析】根据题意,由为原点到直线上点的距离的平方,再根据点到直线垂线段最短,即可求得范围.【详解】由,,视为原点到直线上点的距离的平方,根据点到直线垂线段最短,可得,所有的取值范围为,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】根据圆心到切线的距离等于圆的半径即可求解.【详解】由题意可知,,故在圆外,则过点做圆的切线有两条,且切线斜率必存在,设切线为,即,则圆心到直线的距离,解得或,故切线方程为或故答案为:或14、【解析】利用待定系数法列出关于的方程解出即可得结果.【详解】设的标准方程为,则解得所以的标准方程为故答案为:.15、【解析】设两条曲线交点为根据椭圆和抛物线对称性知,不妨点A在第一象限,由A在抛物线上得,A在椭圆上得.则由条件得:.解得(舍去)16、【解析】参变分离,可得,设,求导分析单调性,可得,即得解【详解】因为,所以不等式可化为,设,则,设,由于故在上单调递增,且,则当时,,单调递减;当时,,单调递增,所以,则,即.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)当0≤a<2时,f(x)max=8-5a;当a≥2时,f(x)max=-a【解析】(1)根据导数的几何意义即可求解;(2)先求函数的导数,令导数等于零,求得两极值点,然后讨论极值点是否在所给区间内,再结合比较区间端点处的函数值的大小,可得答案.【小问1详解】因为,所以,即a=0,所以,f(1)=1,所以切线方程:y-1=3(x-1),即.【小问2详解】,令得,①当a=0时,f(x)=x3在[0,2]上为单调递增函数,所以f(x)max=f(2)=8;②当时,即a≥3时,f(x)在[0,2]上为单调递减函数,所以;③当时,即0<a<3时,f(x)在上单调递减,在单调递增,所以f(x)=max{f(0),f(2)},(i)若f(0)≥f(2),即2≤a<3,f(x)max=f(0)=-a,(ii)若f(0)<f(2),即0<a<2,f(x)max=f(2)=8-5a;综上,当0≤a<2时,f(x)max=f(2)=8-5a;当a≥2时,f(x)max=f(0)=-a18、(1);(2).【解析】(1)由两条双曲线有共同渐近线,可令双曲线方程为,求出即可得双曲线的方程;(2)根据已知有直线为,由其与双曲线的位置关系,结合弦长公式、点线距离公式及三角形面积公式求的面积.【详解】(1)设所求双曲线方程为,代入点得:,即,∴双曲线方程为,即.(2)由(1)知:,即直线方程为.设,联立得,满足且,,由弦长公式得,点到直线的距离.所以【点睛】本题考查了双曲线,根据双曲线共渐近线求双曲线方程,由直线与双曲线的相交位置关系求原点与交点构成三角形的面积,综合应用了弦长公式、点线距离公式、三角形面积公式,属于基础题.19、(1)极差为;第25百分位数为(2)事件和相互独立,理由见解析【解析】(1)根据定义直接计算极差和百分位数得到答案.(2)计算得到,,,即,得到答案.【小问1详解】员工年龄的极差为,,故第25百分位数为.【小问2详解】,,,故,故事件和相互独立.20、(1);(2).【解析】(1)设等差数列的公差为,根据已知条件求,利用等差数列的通项公式可求得数列的通项公式.(2)求得,利用裂项相消法即可求得.【小问1详解】设等差数列的公差为,由,解得,所以,故数列的通项公式;【小问2详解】由(1)得:,所以,所以.21、(1)(2)证明见解析【解析】(1)根据已知条件列方程组,解方程组求得,从而求得椭圆的标准方程.(2)设出直线的方程并与椭圆方程联立,由此求得,同理求得,从而化简求得直线的斜率为定值.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 装配式建筑施工员安全素养测试考核试卷含答案
- 野生动物管护工安全演练测试考核试卷含答案
- 硬质合金烧结工道德测试考核试卷含答案
- 卷烟封装设备操作工操作管理测试考核试卷含答案
- 老年痴呆患者治疗决策的伦理教学
- 老年疾病样本库的长期存储方案
- 住改商消防安全整治指南
- 2025四川成都市双流区空港第四幼儿园招聘7人备考题库及答案详解参考
- 临床用血申请管理制度
- 老年热浪MOF的肠道微生态干预策略
- 安全管理制度培训课件
- 2025年12月福建厦门市鹭江创新实验室管理序列岗位招聘8人备考题库必考题
- 2025下半年四川绵阳市涪城区事业单位选调10人备考题库及答案解析(夺冠系列)
- 高一生物上册期末考试题库含解析及答案
- 收购商场协议书范本
- 承揽加工雕塑合同范本
- 中国大麻行业研究及十五五规划分析报告
- 寒假前安全法律教育课件
- 干热复合事件对北半球植被的影响及响应机制研究
- 2025年四川单招护理试题及答案
- 毛巾染色知识培训课件
评论
0/150
提交评论