安徽省阜阳市太和第一中学2026届高二上数学期末达标检测模拟试题含解析_第1页
安徽省阜阳市太和第一中学2026届高二上数学期末达标检测模拟试题含解析_第2页
安徽省阜阳市太和第一中学2026届高二上数学期末达标检测模拟试题含解析_第3页
安徽省阜阳市太和第一中学2026届高二上数学期末达标检测模拟试题含解析_第4页
安徽省阜阳市太和第一中学2026届高二上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省阜阳市太和第一中学2026届高二上数学期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为原点,点,以为直径的圆的方程为()A. B.C. D.2.在空间直角坐标系中,已知点M是点在坐标平面内的射影,则的坐标是()A. B.C. D.3.椭圆的焦点坐标为()A., B.,C., D.,4.若函数在上有两个极值点,则下列选项中不正确的为()A. B.C. D.5.如图,已知直线AO垂直于平面,垂足为O,BC在平面内,AB与平面所成角的大小为,,,则异面直线AB与OC所成角的余弦值为()A. B.C. D.6.已知,,,若,,共面,则λ等于()A. B.3C. D.97.直线与椭圆交于两点,以线段为直径的圆恰好经过椭圆的左焦点,则此椭圆的离心率为()A B.C. D.8.在二项式的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,则有理项互不相邻的概率()A. B.C. D.9.准线方程为的抛物线的标准方程为()A. B.C. D.10.胡萝卜中含有大量的胡萝卜素,摄入人体消化器官后,可以转化为维生素,现从,两个品种的胡萝卜所含的胡萝卜素(单位:)得到茎叶图如图所示,则下列说法不正确的是A. B.的方差大于的方差C.品种的众数为 D.品种的中位数为11.抛物线的焦点到准线的距离是A.2 B.4C. D.12.不等式的一个必要不充分条件是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.随机变量X的取值为0,1,2,若,,则_________14.直线与直线垂直,则______15.空间四边形中,,,,,,,则与所成角的余弦值等于___________16.已知点在直线上,则的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:转速(转/秒)1615129每小时生产有缺陷的零件数(件)10985通过观察散点图,发现与有线性相关关系:(1)求关于的回归直线方程;(2)若实际生产中,允许每小时生产的产品中有缺陷的零件最多为10个,那么机器的运转速度应控制在什么范围内?(参考:回归直线方程为,其中,)18.(12分)已知满足,.(1)求证:是等差数列,求的通项公式;(2)若,的前项和是,求证:.19.(12分)已知椭圆C与椭圆有相同的焦点,且离心率为.(1)椭圆C的标准方程;(2)若椭圆C的两个焦点,P是椭圆上的点,且,求的面积.20.(12分)已知直线l经过直线,的交点M(1)若直线l与直线平行,求直线l的方程;(2)若直线l与x轴,y轴分别交于A,两点,且M为线段AB的中点,求的面积(其中O为坐标原点)21.(12分)已知椭圆的离心率是,且过点.直线与椭圆相交于两点.(Ⅰ)求椭圆的方程;(Ⅱ)求的面积的最大值;(Ⅲ)设直线,分别与轴交于点,.判断,大小关系,并加以证明.22.(10分)在正方体中,、、分别是、、的中点(1)证明:平面平面;(2)证明:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求圆的圆心和半径,根据圆的标准方程即可求解﹒【详解】由题知圆心为,半径,∴圆方程为﹒故选:A﹒2、C【解析】点在平面内的射影是坐标不变,坐标为0的点.【详解】点在坐标平面内的射影为,故点M的坐标是故选:C3、A【解析】由题方程化为椭圆的标准方程求出c,则椭圆的焦点坐标可求【详解】由题得方程可化为,所以所以焦点为故选:A.4、C【解析】求导,根据题意可得,从而可得出答案.【详解】解:,因为函数在上有两个极值点,所以,即.所以ABD正确,C错误.故选:C.5、B【解析】建立空间直角坐标系,求出相关点的坐标,求出向量的坐标,再利用向量的夹角公式计算即可.【详解】如图,以O为坐标原点,过点O作OB的垂线为x轴,OB为y轴,OA为z轴,建立空间直角坐标系,设,则,,则,,,,,设的夹角为,则,所以异面直线AB与OC所成角的余弦值为,故选:B.6、C【解析】由,,共面,设,列方程组能求出λ的值【详解】∵,,共面,∴设(实数m、n),即,∴,解得故选:C7、D【解析】根据题意作出示意图,根据圆的性质以及直线的倾斜角求解出的长度,再根据椭圆的定义求解出的关系,则椭圆离心率可求.【详解】设椭圆的左右焦点分别为,如下图:因为以线段为直径的圆恰好经过椭圆的左焦点,所以且,所以,又因为的倾斜角为,所以,所以为等边三角形,所以,所以,因为,所以,所以,所以,所以,故选:D.8、A【解析】先根据前三项的系数成等差数列求,再根据古典概型概率公式求结果【详解】因为前三项的系数为,,,当时,为有理项,从而概率为.故选:A.9、D【解析】的准线方程为.【详解】的准线方程为.故选:D.10、C【解析】读懂茎叶图,分别计算出众数、中位数、方差,然后对各选项进行判断【详解】由茎叶图知,品种所含胡萝卜素普遍高于品种,所以,故A正确;品种的数据波动比品种的数据波动大,所以的方差大于的方差,故B正确;品种的众数为与,故C错误;品种的数据的中位数为,故D正确.故选.【点睛】本题主要考查了对数据的分析,首先要读懂茎叶图,然后计算出众数、中位数、方差,即可对各选项进行判断,较为基础11、D【解析】因为抛物线方程可化为,所以抛物线的焦点到准线的距离是,故选D.考点:1、抛物线的标准方程;2、抛物线的几何性质.12、B【解析】解不等式,由此判断必要不充分条件.【详解】,解得,所以不等式的一个必要不充分条件是.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、##0.4【解析】设出概率,利用期望求出相应的概率,进而利用求方差公式进行求解.【详解】设,则,从而,解得:,所以故答案为:14、##【解析】根据两直线垂直得,即可求出答案.【详解】由直线与直线垂直得,.故答案为:.15、【解析】计算出的值,利用空间向量的数量积可得出的值,即可得解.【详解】,,所以,,所以,.所以,与所成角的余弦值为.故答案为:.16、2【解析】由已知可用表示,代入所求式子后,结合二次函数的性质可求【详解】解:由题意得,即,所以,根据二次函数的性质可知,当时,上式取得最小值4,故的最小值2故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)控制在16转/秒内.【解析】(1)结合已知数据,代入公式中,先求出,然后求出,进而可求出,从而可得回归方程.(2)由题意得,即可求出转速的最高速度.【详解】解:(1)由题意知,,所以,则,即关于的回归直线方程为.(2)由可得,解得,所以机器的运转速度应控制在16转/秒内.18、(1)证明见解析,(2)证明见解析【解析】(1)在等式两边同时除以,结合等差数列的定义可证得数列为等差数列,确定该数列的首项和公差,可求得的表达式;(2)求得,利用裂项相消法求得,即可证得原不等式成立.【小问1详解】解:在等式两边同时除以可得且,所以,数列是以为首项,以为公差的等差数列,则,因此,.【小问2详解】证明:,所以,.故原不等式得证.19、(1)(2)【解析】(1)由题意求出即可求解;(2)由椭圆的定义和三角形面积公式求解即可【小问1详解】因为椭圆C与椭圆有相同的焦点,所以椭圆C的焦点,,,又,所以,,所以椭圆C的标准方程为.【小问2详解】由,,得,,而,所以,所以20、(1)(2)4【解析】(1)求出两直线的交点M的坐标,设直线l的方程为代入点M的坐标可得答案;(2)设,,因为为线段AB的中点,可得,由的面积为可得答案.【小问1详解】由,得,所以点M坐标为,因为,则设直线l的方程为,又l过点,代入得,故直线l方程为.【小问2详解】设,,因为为线段AB的中点,则,所以,故,,则的面积为.21、(1)(2)(3)见解析【解析】(1)由题意求得,所以椭圆的方程为(2)联立直线与椭圆方程,由题意可得.三角形的高为.,面积表达式,当且仅当时,.即的面积的最大值是(3)结论为.利用题意有.所以试题解析:解:(Ⅰ)设椭圆的半焦距为因为椭圆的离心率是,所以,即由解得所以椭圆的方程为(Ⅱ)将代入,消去整理得令,解得设则,所以点到直线的距离为所以的面积,当且仅当时,所以的面积的最大值是(Ⅲ).证明如下:设直线,的斜率分别是,,则由(Ⅱ)得,所以直线,的倾斜角互补所以,所以所以22、(1)证明见解析;(2)证明见解析.【解析】(1)连接,分别证明出平面,平面,利用面面平行的判定定理可证得结论成立;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论