2026届江苏南京玄武区数学高一上期末学业水平测试模拟试题含解析_第1页
2026届江苏南京玄武区数学高一上期末学业水平测试模拟试题含解析_第2页
2026届江苏南京玄武区数学高一上期末学业水平测试模拟试题含解析_第3页
2026届江苏南京玄武区数学高一上期末学业水平测试模拟试题含解析_第4页
2026届江苏南京玄武区数学高一上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江苏南京玄武区数学高一上期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则a,b,c的大小关系是()A. B.C. D.2.若,则角终边所在象限是A.第一或第二象限 B.第一或第三象限C.第二或第三象限 D.第三或第四象限3.已知,,则()A. B.C. D.4.已知函数的定义域为,则函数的定义域为()A. B.C. D.5.设函数满足,当时,,则()A.0 B.C. D.16.“x=”是“sinx=”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.设且则()A. B.C. D.8.命题,一元二次方程有实根,则()A.,一元二次方程没有实根B.,一元二次方程没有实根C.,一元二次方程有实根D.,一元二次方程有实根9.如图,三棱柱中,侧棱底面,底面三角形是正三角形,是中点,则下列叙述正确的是A.平面B.与是异面直线C.D.10.如图,在直角梯形ABCD中,AB⊥BC,AD=DC=2,CB=,动点P从点A出发,由A→D→C→B沿边运动,点P在AB上的射影为Q.设点P运动的路程为x,△APQ的面积为y,则y=f(x)的图象大致是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.的化简结果为____________12.函数的值域是________13.已知一个扇形的面积为,半径为,则它的圆心角为______弧度14.第24届冬季奥林匹克运动会简称“北京—张家口冬奥会”,将于2022.2.4~2022.2.20在中华人民共和国北京市和张家口市联合举行.某公司为迎接冬奥会的到来,设计了一款扇形的纪念品,扇形圆心角为2,弧长为12cm,则扇形的面积为______.15.已知,若,使得,若的最大值为,最小值为,则__________16.各条棱长均相等的四面体相邻两个面所成角的余弦值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在R上的奇函数,其中为指数函数,且的图象过定点(1)求函数的解析式;(2)若关于x的方程,有解,求实数a的取值范围;(3)若对任意的,不等式恒成立,求实数k的取值范围18.中国茶文化博大精深,小明在茶艺选修课中了解到,不同类型的茶叶由于在水中溶解性的差别,达到最佳口感的水温不同.为了方便控制水温,小明联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是,环境温度是,则经过时间(单位:分)后物体温度将满足:,其中为正的常数.小明与同学一起通过多次测量求平均值的方法得到初始温度为98℃的水在19℃室温中温度下降到相应温度所需时间如表所示:从98℃下降到90℃所用时间1分58秒从98℃下降到85℃所用时间3分24秒从98℃下降到80℃所用时间4分57秒(1)请依照牛顿冷却模型写出冷却时间(单位:分)关于冷却水温(单位:℃)函数关系,并选取一组数据求出相应的值(精确到0.01).(2)“碧螺春”用75℃左右的水冲泡可使茶汤清澈明亮,口感最佳.在(1)的条件下,水煮沸后在19℃室温下为获得最佳口感大约冷却___________分钟左右冲泡,请在下列选项中选择一个最接近的时间填在横线上,并说明理由.A.5B.7C.10(参考数据:,,,,)19.设,其中(1)当时,求函数的图像与直线交点的坐标;(2)若函数有两个不相等的正数零点,求a的取值范围;(3)若函数在上不具有单调性,求a的取值范围20.已知函数.(1)判断并证明函数的奇偶性;(2)判断当时函数的单调性,并用定义证明.21.在三棱锥中,,,O是线段AC的中点,M是线段BC的中点.(1)求证:PO⊥平面ABC;(2)求直线PM与平面PBO所成的角的正弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据题意,以及指数和对数的函数的单调性,来确定a,b,c的大小关系.【详解】解:是增函数,是增函数.,又,【点睛】本题考查三个数的大小的求法,考查指数函数和对数函数性质等基础知识,考查运算求解能力,是基础题.根据题意,构造合适的对数函数和指数函数,利用指数对数函数的单调性判定的范围是关键.2、D【解析】利用同角三角函数基本关系式可得,结合正切值存在可得角终边所在象限【详解】,且存在,角终边所在象限是第三或第四象限故选D【点睛】本题考查三角函数的象限符号,是基础题3、B【解析】应用同角关系可求得,再由余弦二倍角公式计算.【详解】因,所以,所以,所以.故选:B.【点睛】本题考查同角间的三角函数关系,考查余弦的二倍角公式.求值时要注意角的取值范围,以确定函数值的正负.4、C【解析】解不等式即得函数的定义域.【详解】由题得,解之得,所以函数的定义域为.故答案为C【点睛】本题主要考查复合函数的定义域的求法,考查具体函数的定义域的求法和对数函数的单调性,意在考查学生对这些知识的掌握水平和分析推理能力.5、A【解析】根据给定条件依次计算并借助特殊角的三角函数值求解作答.【详解】因函数满足,且当时,,则,所以.故选:A6、A【解析】根据充分不必要条件的定义可得答案.【详解】当时,成立;而时得(),故选:A【点睛】本题考查充分不必要条件判断,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含7、C【解析】试题分析:由已知得,,去分母得,,所以,又因为,,所以,即,选考点:同角间的三角函数关系,两角和与差的正弦公式8、B【解析】根据全称命题的否定为特称命题可得出.【详解】因为全称命题的否定为特称命题,所以,一元二次方程没有实根.故选:B.9、D【解析】因为三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以对于A,AC与AB夹角为60°,即两直线不垂直,所以AC不可能垂直于平面ABB1A1;故A错误;对于B,CC1与B1E都在平面CC1BB1中不平行,故相交;所以B错误;对于C,A1C1,B1E是异面直线;故C错误;对于D,因为几何体是三棱柱,并且侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以BB1⊥底面ABC,所以BB1⊥AE,AE⊥BC,得到AE⊥平面BCC1B1,所以AE⊥BB1;故选D.10、D【解析】结合P点的运动轨迹以及二次函数,三角形的面积公式判断即可【详解】解:P点在AD上时,△APQ是等腰直角三角形,此时f(x)=•x•x=x2,(0<x<2)是二次函数,排除A,B,P在DC上时,PQ不变,AQ增加,是递增的一次函数,排除C,故选D【点睛】本题考查了数形结合思想,考查二次函数以及三角形的面积问题,是一道基础题二、填空题:本大题共6小题,每小题5分,共30分。11、18【解析】由指数幂的运算与对数运算法则,即可求出结果.【详解】因为.故答案为18【点睛】本题主要考查指数幂运算以及对数的运算,熟记运算法则即可,属于基础题型.12、##【解析】求出的范围,再根据对数函数的性质即可求该函数值域.【详解】,而定义域上递减,,无最小值,函数的值域为故答案为:.13、##【解析】利用扇形的面积公式列方程即可求解.【详解】设扇形的圆心角为,扇形的面积即,解得,所以扇形的圆心角为弧度,故答案为:.14、36【解析】首先根据弧长公式求出扇形的半径,再根据扇形的面积公式计算可得;【详解】解:依题意、cm,所以,即cm,所以;故答案为:15、【解析】作出函数的图像,计算函数的对称轴,设,数形结合判断得时,取最小值,时,取最大值,再代入解析式从而求解出另外两个值,从而得和,即可求解.【详解】作出函数的图像如图所示,令,则函数的对称轴为,由图可知函数关于,,对称,设,则当时,取最小值,此时,可得,故;当时,取最大值,此时,可得,故,所以.故答案为:【点睛】解答该题的关键是利用数形结合,利用三角函数的对称性与周期性判断何时取得最大值与最小值,再代入计算.16、【解析】首先利用图像作出相邻两个面所成角,然后利用已知条件求出正四面体相邻两个面所成角的两边即可求解.【详解】由题意,四面体为正三棱锥,不妨设正三棱锥的边长为,过作平面,垂足为,取的中点,并连接、、、,如下图:由正四面体的性质可知,为底面正三角形的中心,从而,,∵为的中点,为正三角形,所以,,所以为正四面体相邻两个面所成角∵,∴易得,,∵平面,平面,∴,故.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)设出的解析式,根据点求得的解析式.根据为奇函数,求得解析式.(2)根据的单调性和值域,求得的取值范围.(3)证得的单调性,结合的奇偶性化简不等式,得到对任意的,,利用二次函数的性质求得的取值范围.【详解】(1)设(,且),则,所以(舍去)或,所以,又为奇函数,且定义域为R,所以,即,所以,所以(2)由于为上减函数,由于,所以,所以,所以.(3)设,则因为,所以,所以,所以,即,所以函数在R上单调递减要使对任意的,恒成立,即对任意的,恒成立因为为奇函数,所以恒成立又因函数在R上单调递减,所以对任意的,恒成立,即对任意的,恒成立令,,时,成立;时,所以,,,无解综上,【点睛】本小题主要考查指数函数解析式的求法,考查分式型函数值域的求法,考查利用函数的奇偶性和单调性解函数不等式,考查二次函数的性质,考查分类讨论的数学思想方法,综合性较强,属于难题.18、(1);(2)大约冷却分钟,理由见解析.【解析】(1)根据求得冷却时间(单位:分)关于冷却水温(单位:℃)的函数关系,结合对数运算求得.(2)根据(1)中的函数关系式列方程,由此求得冷却时间.【小问1详解】依题意,,,,,,.,依题意,则.若选:从98℃下降到90℃所用时间:1分58秒,即分,则若选:从98℃下降到85℃所用时间:3分24秒,即分,若选:从98℃下降到80℃所用时间:4分57秒,即分,所以.【小问2详解】结合(1)可知:,依题意,.所以大约冷却分钟.19、(1),(2)(3)【解析】(1)联立方程直接计算;(2)根据二次方程零点个数的判别式及函数值正负情况直接求解;(3)根据二次函数单调性可得参数范围.【小问1详解】当时,,联立方程,解得:或,即交点坐标为和.【小问2详解】由有两个不相等的正数零点,得方程有两个不等的正实根,,即,解得;【小问3详解】函数在上单调递增,在上单调递减;又函数在上不具有单调性,所以,即.20、(1)函数为奇函数,证明见解析(2)在上为增函数,证明见解析【解析】(1)先判断奇偶性,根据奇函数的定义证明即可;(2)先判断单调性,根据函数单调性的定义法证明即可.【小问1详解】函数为奇函数.证明如下:∵定义域为R,又,∴为奇函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论