版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届福建省龙岩第二中学高一上数学期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.,,,则的大小关系为()A. B.C. D.2.函数单调递增区间为A. B.C D.3.已知a=20.1,b=log43.6,c=log30.3,则()A.a>b>c B.b>a>cC.a>c>b D.c>a>b4.在平面直角坐标系中,动点在单位圆上按逆时针方向作匀速圆周运动,每分钟转动一周.若的初始位置坐标为,则运动到分钟时,的位置坐标是()A B.C. D.5.已知直线和互相平行,则实数等于()A.或3 B.C. D.1或6.函数零点所在的区间是()A. B.C. D.7.函数的大致图象是()A. B.C. D.8.如图,已知水平放置的按斜二测画法得到的直观图为,若,,则的面积为()A.12 B.C.6 D.39.计算(16A.-1 B.1C.-3 D.310.函数的部分图象如图所示,则的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.当时x≠0时的最小值是____.12.=________13.在中,已知是x的方程的两个实根,则________14.如图是函数在一个周期内的图象,则其解析式是________15.已知函数,若,则实数的取值范围是__________.16.已知函数()①当时的值域为__________;②若在区间上单调递增,则的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,当k为何值时.(1)与垂直?(2)与平行?平行时它们是同向还是反向?18.已知函数,(1)若,求在区间上的最小值;(2)若在区间上有最大值3,求实数的值.19.已知,,,.(1)求的值;(2)求的值:(3)求的值.20.已知函数(1)若的定义域为R,求a的取值范围;21.某市为发展农业经济,鼓励农产品加工,助推美丽乡村建设,成立了生产一种饮料的食品加工企业,每瓶饮料的售价为14元,月销售量为9万瓶.(1)根据市场调查,若每瓶饮料的售价每提高1元,则月销售量将减少5000瓶,要使月销售收入不低于原来的月销售收入,该饮料每瓶售价最多为多少元?(2)为了提高月销售量,该企业对此饮料进行技术和销售策略改革,提高每瓶饮料的售价到元,并投入万元作为技术革新费用,投入2万元作为固定宣传费用.试问:技术革新后,要使革新后的月销售收入不低于原来的月销售收入与总投入之和,求月销售量(万瓶)的最小值,以及取最小值时的每瓶饮料的售价.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据对数函数的单调性得到,根据指数函数的单调性得到,根据正弦函数的单调性得到.【详解】易知,,因,函数在区间内单调递增,所以,所以.故选:D.2、A【解析】,所以.故选A3、A【解析】直接判断范围,比较大小即可.【详解】,,,故a>b>c.故选:A.4、A【解析】根据题意作出图形,结合图形求出3分钟转过角度,由此计算点的坐标.【详解】每分钟转动一周,则运动到分钟时,其转过的角为,如图,设与x轴正方向所成的角为,则与x轴正方向所成的角为,的初始位置坐标为,即,所以,即.故选:A5、A【解析】由两直线平行,得到,求出,再验证,即可得出结果.详解】∵两条直线和互相平行,∴,解得或,若,则与平行,满足题意;若,则与平行,满足题意;故选:A6、D【解析】题目中函数较为简单,可以直接求得对应的零点,从而判断所在区间即可【详解】当时,令,即,所以;当时,令,即,,不在定义域区间内,舍所以函数零点所在的区间为故选:D7、A【解析】利用奇偶性定义可知为偶函数,排除;由排除,从而得到结果.【详解】为偶函数,图象关于轴对称,排除又,排除故选:【点睛】本题考查函数图象的识别,对于此类问题通常采用排除法来进行排除,考虑的因素通常为:奇偶性、特殊值和单调性,属于常考题型.8、C【解析】由直观图,确定原图形中线段长度和边关系后可求得面积【详解】由直观图,知,,,所以三角形面积为故选:C9、B【解析】原式=故选B10、C【解析】由函数的部分图象得到函数的最小正周期,求出,代入求出值,则函数的解析式可求,取可得的值.【详解】由图象可得函数的最小正周期为,则.又,则,则,,则,,,则,,则,.故选:C.【点睛】方法点睛:根据三角函数的部分图象求函数解析式的方法:(1)求、,;(2)求出函数的最小正周期,进而得出;(3)取特殊点代入函数可求得的值.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】直接利用基本不等式的应用求出结果【详解】解:由于,所以(当且仅当时,等号成立)故最小值为故答案为:12、【解析】利用两角差的正切公式直接求值即可.【详解】=故答案为【点睛】本题主要考查两角差的正切公式,特殊角的三角函数值,属于基础题.13、##【解析】根据根与系数关系可得,,再由三角形内角和的性质及和角正切公式求,即可得其大小.【详解】由题设,,,又,且,∴.故答案为:.14、【解析】由图可得;,则;由五点作图法可得,解得,所以其解析式为考点:1.三角函数的图像;2.五点作图法;15、【解析】先确定函数单调性,再根据单调性化简不等式,最后解一元二次不等式得结果.【详解】在上单调递增,在上单调递增,且在R上单调递增因此由得故答案为:【点睛】本题考查根据函数单调性解不等式,考查基本分析求解能力,属中档题.16、①.②.【解析】当时,分别求出两段函数的值域,取并集即可;若在区间上单调递增,则有,解之即可得解.【详解】解:当时,若,则,若,则,所以当时的值域为;由函数(),可得函数在上递增,在上递增,因为在区间上单调递增,所以,解得,所以若在区间上单调递增,则的取值范围是.故答案为:;.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2),反向【解析】(1)计算得到,,计算得到答案.(2)根据得到,计算并判断方向得到答案,【详解】(1);,得,(2),得,此时,所以方向相反.【点睛】本题考查了向量的平行和垂直,意在考查学生的计算能力.18、(1);(2)或.【解析】(1)先求函数对称轴,再根据对称轴与定义区间位置关系确定最小值取法(2)根据对称轴与定义区间位置关系三种情况分类讨论最大值取法,再根据最大值为3,解方程求出实数的值试题解析:解:(1)若,则函数图像开口向下,对称轴为,所以函数在区间上是单调递增的,在区间上是单调递减的,有又,(2)对称轴为当时,函数在在区间上是单调递减的,则,即;当时,函数在区间上是单调递增的,在区间上是单调递减的,则,解得,不符合;当时,函数在区间上是单调递增的,则,解得;综上所述,或点睛:(1)已知函数的奇偶性求参数,一般采用待定系数法求解,根据得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值;(2)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于的方程,从而可得的值或解析式.19、(1);(2);(3).【解析】(1)同角三角函数平方关系求得,,再由及差角余弦公式求值即可.(2)由诱导公式、二倍角余弦公式可得,即可求值.(3)由(1)及和角正余弦公式求、,由(2)及平方关系求,最后应用差角余弦公式求,结合角的范围求.【小问1详解】由题设,,,∴,,又.【小问2详解】.【小问3详解】由,则,由,则,∴,,又,,则,∴,而,故.20、(1)(2)【解析】(1)转化为,可得答案;(2)转化为时,利用基本不等式对求最值可得答案【小问1详解】由题意得恒成立,得,解得,故a的取值范围为【小问2详解】由,得,即,因为,所以,因为,所以,当且仅当,即时,等号成立故,a的取值范围为21、(1)18元;(2),此时每瓶饮料的售价为16元.【解析】(1)先求售价为元时的销售收入,再列不等式求解;(2)由题意有解,参变分离后求的最小值.【详解】(1)设每平售价为元,依题意有,即,解得:,所以要使月
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 职业健康档案电子化自助查询与报告生成系统
- 职业健康师资团队文化建设
- 驻马店2025年河南驻马店市确山县遴选城区及街道办事处学校教师教研员140人笔试历年参考题库附带答案详解
- 镇江2025年江苏镇江扬中市选调事业单位人员13人笔试历年参考题库附带答案详解
- 赤峰2025年内蒙古赤峰市使用市直事业单位引进企业急需紧缺高层次人才16人笔试历年参考题库附带答案详解
- 芜湖安徽芜湖经济技术开发区招聘小学聘用教师62人笔试历年参考题库附带答案详解
- 温州2025年下半年浙江温州市市级事业单位选调16人笔试历年参考题库附带答案详解
- 毕节2025年贵州黔西市人民医院招聘68人笔试历年参考题库附带答案详解
- 新疆2025年新疆生产建设兵团第五师双河市事业单位招聘127人笔试历年参考题库附带答案详解
- 忻州2025年山西原平市医疗集团招聘41人笔试历年参考题库附带答案详解
- 《生活垃圾填埋场环境风险评估技术指南》
- 2023届高考语文二轮复习:小说标题的含义与作用 练习题(含答案)
- 网络直播创业计划书
- 大学任课老师教学工作总结(3篇)
- 3D打印增材制造技术 课件 【ch01】增材制造中的三维模型及数据处理
- 医院保洁应急预案
- 化工设备培训
- 钢结构安装施工专项方案
- 高三体育生收心主题班会课件
- FZ/T 90086-1995纺织机械与附件下罗拉轴承和有关尺寸
- 登杆培训材料课件
评论
0/150
提交评论