版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省阜新市2026届数学高一上期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.总体由编号为01,02,...,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表的第1行第5列和第6列数字开始由左向右依次选取两个数字,则选出来的第5个个体的编号为()7961950784031379510320944316831718696254073892615789810641384975A.20 B.18C.17 D.162.光线由点P(2,3)射到直线上,反射后过点Q(1,1),则反射光线所在的直线方程为A. B.C. D.3.已知圆与圆相离,则的取值范围()A. B.C. D.4.一个几何体的三视图如图所示,则几何体的体积是()A. B.C. D.25.将函数的图象向右平移个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的倍(纵坐标不变),则所得到的图象的函数解析式为A. B.C. D.6.植物研究者在研究某种植物1-5年内的植株高度时,将得到的数据用下图直观表示.现要根据这些数据用一个函数模型来描述这种植物在1-5年内的生长规律,下列函数模型中符合要求的是()A.(且)B.(,且)C.D.7.若函数的最大值为,最小值为-,则的值为A. B.2C. D.48.已知,则为()A. B.2C.3 D.或39.已知函数是定义域上的递减函数,则实数a的取值范围是()A. B.C. D.10.在平行四边形中,设,,,,下列式子中不正确是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则__________.12.在中,已知是延长线上一点,若,点为线段的中点,,则_________13.若,则a的取值范围是___________14.直线被圆截得弦长的最小值为______.15.给出下列命题:①存在实数,使;②函数是偶函数;③若是第一象限角,且,则;④是函数的一条对称轴方程以上命题是真命题的是_______(填写序号)16.已知函数,则函数的值域为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)已知,,,求的最小值;(2)把角化成的形式.18.已知函数.(1)判断函数的奇偶性,并说明理由;(2)用函数单调性的定义证明函数在上是减函数19.已知.(1)求及;(2)若,,求的值.20.已知函数,.(1)若角满足,求;(2)若圆心角为,半径为2的扇形的弧长为,且,,求.21.一几何体按比例绘制的三视图如图所示(单位:).(1)试画出它的直观图(不写作图过程);(2)求它的表面积和体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用随机数表从给定位置开始依次取两个数字,根据与20的大小关系可得第5个个体的编号.【详解】从随机数表的第1行第5列和第6列数字开始由左向右依次选取两个数字,小于或等于20的5个编号分别为:07,03,13,20,16,故第5个个体编号为16.故选:D.【点睛】本题考查随机数表抽样,此类问题理解抽样规则是关键,本题属于容易题.2、A【解析】设点关于直线的对称点为,则,解得,即对称点为,则反射光线所在直线方程即:故选3、D【解析】∵圆的圆心为,半径为,圆的标准方程为,则又两圆相离,则:,本题选择D选项.点睛:判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法4、B【解析】由三视图可知此几何体是由一个长为2,宽为,高为的长方体过三个顶点切去一角的空间多面体,如图所示,则其体积为.故正确答案选B.考点:1.三视图;2.简单组合体体积.5、A【解析】由题意利用函数的图象变换法则,即可得出结论【详解】将函数的图象向右平移个的单位长度,可得的图象,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为,故选【点睛】本题主要考查函数的图象变换法则,注意对的影响6、B【解析】由散点图直接选择即可.【详解】解:由散点图可知,植物高度增长越来越缓慢,故选择对数模型,即B符合.故选:B.7、D【解析】当时取最大值当时取最小值∴,则故选D8、C【解析】根据分段函数的定义域求解.【详解】因为,所以故选:C9、B【解析】由指数函数的单调性知,即二次函数是开口向下的,利用二次函数的对称轴与1比较,再利用分段函数的单调性,可以构造一个关于a的不等式,解不等式即可得到实数a的取值范围【详解】函数是定义域上的递减函数,当时,为减函数,故;当时,为减函数,由,得,开口向下,对称轴为,即,解得;当时,由分段函数单调性知,,解得;综上三个条件都满足,实数a的取值范围是故选:B.【点睛】易错点睛:本题考查分段函数单调性,函数单调性的性质,其中解答时易忽略函数在整个定义域上为减函数,则在分界点处()时,前一段的函数值不小于后一段的函数值,考查学生的分析能力与运算能力,属于中档题.10、B【解析】根据向量加减法计算,再进行判断选择.【详解】;;;故选:B【点睛】本题考查向量加减法,考查基本分析求解能力,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】首先根据同角三角函数的基本关系求出,再利用二倍角公式及同角三角函数的基本关系将弦化切,最后代入计算可得;【详解】解:因为,所以,所以故答案为:12、【解析】通过利用向量的三角形法则,以及向量共线,代入化简即可得出【详解】解:∵()(),∴λ,∴故答案为【点睛】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题13、【解析】先通过的大小确定的单调性,再利用单调性解不等式即可【详解】解:且,,得,又在定义域上单调递减,,,解得故答案为:【点睛】方法点睛:在解决与对数函数相关的解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,及真数必须为正的限制条件14、【解析】先求直线所过定点,根据几何关系求解【详解】,由解得所以直线过定点A(1,1),圆心C(0,0),由几何关系知当AC与直线垂直时弦长最小.弦长最小值为.故答案为:15、②④【解析】根据三角函数的性质,依次分析各选项即可得答案.【详解】解:①因为,故不存在实数,使得成立,错误;②函数,由于是偶函数,故是偶函数,正确;③若,均为第一象限角,显然,故错误;④当时,,由于是函数的一条对称轴,故是函数的一条对称轴方程,正确.故正确的命题是:②④故答案为:②④16、【解析】先求的的单调性和值域,然后代入中求得函数的值域.【详解】由于为上的增函数,而,,即,对,由于为增函数,故,即函数的值域为,也即.【点睛】本小题主要考查函数的单调性,考查函数的值域的求法,考查复合函数值域的求法.属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用基本不等式可求得的最小值;(2)将角度化为弧度,再将弧度化为的形式即可.【详解】解:(1)因为,,,,当且仅当时,等号成立,故的最小值为;(2),.18、(1)偶函数,证明见解析;(2)证明见解析.【解析】(1)根据奇偶性的定义判断函数的奇偶性,(2)利用函数单调性的定义证明,先取值,再作差变形,判断符号,然后得出结论【详解】解:(1)根据题意,函数为偶函数,证明:,其定义域为,有,则是偶函数;(2)证明:设,则,又由,则,必有,故在上是减函数19、(1),;(2).【解析】(1)应用二倍角正切公式求,由和角正切公式求.(2)根据已知角的范围及函数值,结合同角三角函数的平方关系求,,进而应用和角正弦公式求.【小问1详解】,.【小问2详解】,.,..20、(1)(2)或【解析】(1)对已知式子化简变形求出,从而可求出的值,(2)先对化简变形得,再由可求出,再利用弧长公式可求得结果【小问1详解】∵,∴,∴.【小问2详解】∵∴,∴,∵,∴或.∴或.21、(1)直观图见解析;(2),.【解析】(1)由三视图直接画出它的直观图即可;(2)由三视图可知该几何体是长方体
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 职业体检项目优化的成本控制策略
- 金华2025年浙江金华磐安县人民检察院司法雇员招录4人笔试历年参考题库附带答案详解
- 连云港2025年江苏连云港东海县卫生健康委员会所属事业单位招聘18人笔试历年参考题库附带答案详解
- 苏州2025年江苏苏州张家港市保税区街道招聘村(社区)工作人员7人笔试历年参考题库附带答案详解
- 眉山2025年四川眉山天府学校招聘事业人员13人笔试历年参考题库附带答案详解
- 温州2025年浙江温州苍南县事业单位招聘工作人员151人笔试历年参考题库附带答案详解
- 泸州2025年四川泸州市龙马潭区招聘教师3人笔试历年参考题库附带答案详解
- 江西2025年江西机电职业技术学院人事代理人员招聘50人笔试历年参考题库附带答案详解
- 日照2025年山东日照市卫生学校招聘工作人员3人笔试历年参考题库附带答案详解
- 怒江云南怒江州司法局招聘公益性岗位笔试历年参考题库附带答案详解
- 2022版义务教育(物理)课程标准(附课标解读)
- 神经外科介入神经放射治疗技术操作规范2023版
- 肺结核患者合并呼吸衰竭的护理查房课件
- 安川XRC机器人CIO培训讲议课件
- 地源热泵施工方案
- 滨海事业单位招聘2023年考试真题及答案解析1
- 热电厂主体设备安装施工组织设计
- CT尿路成像的课件资料
- GB/T 26784-2011建筑构件耐火试验可供选择和附加的试验程序
- PKPM结果分析限值规范要求和调整方法(自动版)
- 煤矿安全规程执行说明
评论
0/150
提交评论