版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届贵州省黔东南苗族侗族自治州东南州名校数学高二上期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在三棱锥中,平面;记直线与直线所成的角为,直线与平面所成的角为,二面角的平面角为,则()A. B.C. D.2.若椭圆对称轴是坐标轴,长轴长为,焦距为,则椭圆的方程()A. B.C.或 D.以上都不对3.如图,在三棱锥中,点E在上,满足,点F为的中点,记分别为,则()A. B.C. D.4.已知双曲线的左、右焦点分别为,,P为双曲线C上一点,,直线与y轴交于点Q,若,则双曲线C的渐近线方程为()A. B.C. D.5.等差数列中,若,则()A.42 B.45C.48 D.516.记等差数列的前n项和为,若,,则等于()A.5 B.31C.38 D.417.已知直线与圆相切,则的值是()A. B.C. D.8.已知数列满足,,则()A. B.C. D.9.直线l经过两条直线和的交点,且平行于直线,则直线l的方程为()A. B.C. D.10.圆的圆心坐标和半径分别为()A.和 B.和C.和 D.和11.某学生2021年共参加10次数学竞赛模拟考试,成绩分别记为,,,…,,为研究该生成绩的起伏变化程度,选用一下哪个数字特征最为合适()A.,,,…,的平均值; B.,,,…,的标准差;C.,,,…,的中位数; D.,,,…,的众数;12.已知直线、的方向向量分别为、,若,则等于()A.1 B.2C.0 D.3二、填空题:本题共4小题,每小题5分,共20分。13.在等比数列中,若,,则数列的公比为___________.14.近年来,我国外卖业发展迅猛,外卖小哥穿梭在城市的大街小巷成为一道道亮丽的风景线.他们根据外卖平台提供的信息到外卖店取单,某外卖小哥每天来往于r个外卖店(外卖店的编号分别为1,2,…,r,其中),约定:每天他首先从1号外卖店取单,称为第1次取单,之后,他等可能的前往其余个外卖店中的任何一个店取单,称为第2次取单,依此类推.假设从第2次取单开始,他每次都是从上次取单的店之外的个外卖店取单.设事件表示“第k次取单恰好是从1号店取单()”,是事件发生的概率,显然,,则______,与的关系式为______15.直线被圆截得的弦长为_______16.抛物线的聚焦特点:从抛物线的焦点发出的光经过抛物线反射后,光线都平行于抛物线的对称轴.另一方面,根据光路的可逆性,平行于抛物线对称轴的光线射向抛物线后的反射光线都会汇聚到抛物线的焦点处.已知抛物线,一条平行于抛物线对称轴的光线从点向左发出,先经抛物线反射,再经直线反射后,恰好经过点,则该抛物线的标准方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)讨论函数的单调性;(2)若对任意的,都有成立,求的取值范围18.(12分)已知函数.(1)设函数,讨论在区间上的单调性;(2)若存在两个极值点,()(极值点是指函数取极值时对应的自变量的值),且,证明:.19.(12分)如图,三棱锥中,为等边三角形,且面面,(1)求证:;(2)当与平面BCD所成角为45°时,求二面角的余弦值20.(12分)如图,在正四棱柱中,是上的点,满足为等边三角形.(1)求证:平面;(2)求二面角的余弦值.21.(12分)已知数列中,,且(1)求证:数列是等差数列,并求出;(2)数列前项和为,求22.(10分)如图,四棱锥P-ABCD的底面是矩形,底面ABCD,,M为BC中点,且.(1)求BC;(2)求二面角A-PM-B的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先得到三棱锥的每一个面都是直角三角形,然后可得与平面所成的角,二面角的平面角,在直角三角形中算出他们的余弦值,利用向量法计算直线与直线所成的角为的余弦值,然后比较大小.【详解】令,由平面,且平面,又,,面三棱锥的每一个面都是直角三角形.与平面所成的角,二面角的平面角,由已知可得,,,又,则所以,又均为锐角,故选:A.2、C【解析】求得、、的值,由此可得出所求椭圆的方程.【详解】由题意可得,解得,,由于椭圆的对称轴是坐标轴,则该椭圆的方程为或.故选:C.3、B【解析】利用空间向量加减、数乘的几何意义,结合三棱锥用表示出即可.【详解】由题设,,,,.故选:B4、B【解析】由题意可设且,即得a、b的数量关系,进而求双曲线C的渐近线方程.【详解】由题设,,,又,P为双曲线C上一点,∴,又,为的中点,∴,即,∴双曲线C的渐近线方程为.故选:B.5、C【解析】结合等差数列的性质求得正确答案.【详解】依题意是等差数列,,.故选:C6、A【解析】设等差数列的公差为d,首先根据题意得到,再解方程组即可得到答案.【详解】解:设等差数列的公差为d,由题知:,解得.故选:A.7、D【解析】直线与圆相切,直接通过求解即可.【详解】因为直线与圆相切,所以圆心到直线的距离,所以,.故选:D8、A【解析】根据递推关系依次求出即可.【详解】,,,,,.故选:A.9、B【解析】联立已知两条直线方程求出交点,再根据两直线平行则斜率相同求出斜率即可.【详解】由得两直线交点为(-1,0),直线l斜率与相同,为,则直线l方程为y-0=(x+1),即x-2y+1=0.故选:B.10、C【解析】利用圆的一般方程的圆心和半径公式,即得解【详解】可化为,由圆心为,半径,易知圆心的坐标为,半径为.故选:C11、B【解析】根据平均数、标准差、中位数及众数的概念即得.【详解】根据平均数、中位数、众数的概念可知,平均数、中位数、众数描述数据的集中趋势,标准差描述数据的波动大小估计数据的稳定程度.故选:B.12、C【解析】由可得出,利用空间向量数量积的坐标运算可得出关于实数的等式,由此可解得实数的值.【详解】若,则,所以,所以,解得.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】求出等比数列的公比,利用定义可求得数列的公比.【详解】设等比数列的公比为,则,因此,数列的公比为.故答案为:.14、①.②.【解析】根据题意,结合条件概率的计算公式,即可求解.【详解】根据题意,事件表示“第3次取单恰好是从1号店取单”,因此;同理故答案为:;.15、【解析】求出圆心到直线的距离,结合半径,利用勾股定理可得答案.【详解】的圆心坐标为,,圆心到直线的距离,则直线被圆截得的弦长为:故答案为:16、【解析】根据抛物线的聚焦特点,经过抛物线后经过抛物线焦点,再经直线反射后经过点,则根据反射特点,列出相关方程,解出方程即可.【详解】设光线与抛物线的交点为,抛物线的焦点为,则可得:抛物线的焦点为:则直线的方程为:设直线与直线的交点为,则有:解得:则过点且垂直于的直线的方程为:根据题意可知:点关于直线的对称点在直线上设点,的中点为,则有:直线垂直于,则有:点在直线上,则有:点在直线上,则有:化简得:又故故答案为:【点睛】直线关于直线对称对称,利用中点坐标公式和直线与直线垂直的特点建立方程,根据题意列出隐含的方程是关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析;(2).【解析】(1)求,分别讨论不同范围下的正负,分别求单调性;(2)由(1)所求的单调性,结合,分别求出的范围再求并集即可.【详解】解:(1)由已知定义域为,当,即时,恒成立,则在上单调递增;当,即时,(舍)或,所以在上单调递减,在上单调递增.所以时,在上单调递增;时,在上单调递减,在上单调递增.(2)由(1)可知,当时,在上单调递增,若对任意的恒成立,只需,而恒成立,所以成立;当时,若,即,则在上单调递增,又,所以成立;若,则在上单调递减,在上单调递增,又,所以,,不满足对任意的恒成立.所以综上所述:.18、(1)答案见解析(2)证明见解析【解析】(1)由题意得,然后对其求导,再分,两种情况讨论导数的正负,从而可求出函数的单调区间,(2)由(1)结合零点存在性定理可得在和上各有一个零点,且是的两个极值点,再将极值点代入导函数中化简结合已知可得,,从而将要证的结论转化为证,令,再次转化为利用导数求的最小值大于零即可【小问1详解】由,得,则,当时,在上单调递增;当时,令.当时,单调递增;当时,单调递减.综上,当时,的增区间为,无减区间当时,的增区间为,减区间为小问2详解】由(1)知若存在两个极值点,则,且,且注意到,所以在和上各有一个零点,且时,单调递减;当时,单调递增;当时,单调递减.所以是的两个极值点.,因为,所以,所以,所以,即,所以而,所以,所以,要证,即要证即要证:因为,所以所以,即要证:即要证:令,即要证:即要证:令当时,,所以在上单调增所以结论得证.【点睛】关键点点睛:此题考查导数的应用,考查利用求函数的单调区间,考查利用导数证明不等式,解题的关键是将两个极值点代入导函数中化简后,将问题转化为证明成立,换元后构造函数,再利用导数证明,考查数学转化思想和计算能力,属于较难题19、(1)证明见解析;(2).【解析】(1)根据给定条件证得平面即可推理作答.(2)由与平面BCD所成角确定正边长与CD长的关系,再作出二面角的平面角,借助余弦定理计算作答.【小问1详解】在三棱锥中,平面平面,平面平面,而,平面,因此有平面,又有平面,所以.【小问2详解】取BC中点F,连接AF,DF,如图,因为等边三角形,则,而平面平面,平面平面,平面,于是得平面,是与平面BCD所成角,即,令,则,因,即有,由(1)知,,则有,过C作交AD于O,在平面内过O作交BD于E,连CE,从而得是二面角的平面角,中,,,中,由余弦定理得,,,显然E是斜边中点,则,中,由余弦定理得,所以二面角的余弦值.20、(1)证明见解析(2)【解析】(1)根据题意证明,,然后根据线面垂直的判定定理证明问题;(2)以,,为轴的正方向建立空间直角坐标系,求平面,平面的法向量,求法向量的夹角,根据二面角的余弦值与法向量的夹角的余弦的关系确定二面角的余弦值.【小问1详解】由题意,,等边三角形,,∵平面ABCD,∴,则,即为中点.连接,∵平面,平面,∴,易得,则,又,于是,即,同理,即,又,平面平面.【小问2详解】由题意直线平面,四边形为正方形,故以,,为轴的正方向建立空间直角坐标系,则,.设面的法向量为,同理可得面的法向量,∴二面角的余弦值为21、(1)证明见解析,(2)【解析】(1)利用等差数列的定义可证是等差数列,利用等差数列的通项公式可求.(2)利用错位相减法可求.【小问1详解】因为,是以为首项,为公差的等差数列,,.【小问2详解】,,,.22、(1);(2).【解析】(1)根据给定条件推导证得,再借助直角三角形中锐角的正切列式求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026福建福州墨尔本理工职业学院招聘备考题库(含答案详解)
- 2026年定点帮扶资源整合优化方法
- 2026福建省汽车工业集团有限公司招聘160人备考题库及1套完整答案详解
- 城市公园物资采购与管理手册
- 南昌印钞有限公司2026年度招聘备考题库【11人】及答案详解(易错题)
- 2026年乡村数字文化建设实务课
- 防洪防涝设施档案资料管理手册
- 职业共病管理中的跨区域协作模式
- 供应部年终工作总结
- 职业健康监护中的患者隐私保护措施
- 冷库安全生产责任制制度
- 陕西省西安市高新一中、交大附中、师大附中2026届高二生物第一学期期末调研模拟试题含解析
- 2025儿童心肺复苏与急救指南详解课件
- 2026年常州机电职业技术学院单招综合素质考试题库及答案1套
- 2026年税务师执业规范考试题目含答案
- 2026年江苏农林职业技术学院单招职业适应性测试模拟测试卷必考题
- 广东省广州市八区联考2024-2025学年高一上学期期末教学质量监测数学试卷(含答案)
- 选举法知识课件
- 蒸汽管道安装现场施工方案
- 运维档案管理制度
- 2024年中考英语真题分类汇编-记叙文阅读理解(含答案)
评论
0/150
提交评论