版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山西省晋城市高二数学第一学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列的前n项和为,,,则=()A. B.C. D.2.现从名男医生和名女医生中抽取两人加入“援鄂医疗队”,用表示事件“抽到的两名医生性别相同”,表示事件“抽到的两名医生都是女医生”,则()A. B.C. D.3.若复数的模为2,则的最大值为()A. B.C. D.4.如图,将边长为4的正方形折成一个正四棱柱的侧面,则异面直线AK和LM所成角的大小为()A.30° B.45°C.60° D.90°5.已知椭圆的左右焦点分别为,,点B为短轴的一个端点,则的周长为()A.20 B.18C.16 D.96.已知平面向量,且,向量满足,则的最小值为()A. B.C. D.7.已知是空间的一个基底,,,,若四点共面.则实数的值为()A. B.C. D.8.过双曲线的右焦点F作一条渐近线的垂线,垂足为M,且FM的中点A在双曲线上,则双曲线离心率e等于()A. B.C. D.9.(2016新课标全国Ⅱ理科)已知F1,F2是双曲线E:的左,右焦点,点M在E上,MF1与轴垂直,sin,则E的离心率为A. B.C. D.210.集合,,则()A. B.C. D.11.执行如图所示的程序框图,输出的s值为()A.8 B.9C.27 D.3612.已知是椭圆右焦点,点在椭圆上,线段与圆相切于点,且,则椭圆的离心率等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在梯形中,,,.将梯形绕所在的直线旋转一周而形成的曲面所围成的几何体的体积为______.14.已知数列,点在函数的图象上,则数列的前10项和是______15.点到直线的距离为________.16.已知点是抛物线的准线与x轴的交点,F为抛物线的焦点,P是抛物线上的动点,则最小值为_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆上的点到左、右焦点、的距离之和为4,且右顶点A到右焦点的距离为1.(1)求椭圆的方程;(2)直线与椭圆交于不同两点,,记的面积为,当时求的值.18.(12分)如图,正方体的棱长为4,E,F分别是上的点,且.(1)求与平面所成角的正切值;(2)求证:.19.(12分)已知数列满足且.(1)证明数列是等比数列;(2)设数列满足,,求数列的通项公式.20.(12分)设A,B为曲线C:y=上两点,A与B的横坐标之和为4(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程21.(12分)已知数列的首项,其前n项和为,且满足.(1)求数列的通项公式;(2)设,数列的前n项和为,且,求n.22.(10分)某高校在今年的自主招生考试成绩中随机抽取100名考生的笔试成绩,分为5组制出频率分布表如图所示.组号分组频数频率150052350.35330b4cd5100.1(1)求b,c,d的值;(2)该校决定在成绩较好的3、4、5组用分层抽样抽取6名学生进行面试,则每组应各抽多少名学生?(3)在(2)的前提下,从抽到6名学生中再随机抽取2名被甲考官面试,求这2名学生来自同一组的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用公式计算得到,得到答案【详解】由已知得,即,而,所以故选:D2、A【解析】先求出抽到的两名医生性别相同的事件的概率,再求抽到的两名医生都是女医生事件的概率,然后代入条件概率公式即可【详解】解:由已知得,,则,故选:A【点睛】此题考查条件概率问题,属于基础题3、A【解析】由题意得,表示以为圆心,2为半径的圆,表示过原点和圆上的点的直线的斜率,由图可知,当直线与圆相切时,取得最值,然后求出切线的斜率即可【详解】因为复数的模为2,所以,所以其表示以为圆心,2为半径的圆,如图所示,表示过原点和圆上的点的直线的斜率,由图可知,当直线与圆相切时,取得最值,设切线方程为,则,解得,所以的最大值为,故选:A4、D【解析】作出折叠后的正四棱锥,确定线面关系,从而把异面直线的夹角通过平移放到一个平面内求得.【详解】由题知,折叠后的正四棱锥如图所示,易知K为的四等分点,L为的中点,M为的四等分点,,取的中点N,易证,则异面直线AK和LM所成角即直线AK和KN所成角,在中,,,故故选:D5、B【解析】根据椭圆的定义求解【详解】由椭圆方程知,所以,故选:B6、B【解析】由题设可得,又,易知,,将问题转化为平面点线距离关系:向量的终点为圆心,1为半径的圆上的点到向量所在射线的距离最短,即可求的最小值.【详解】解:∵,而,∴,又,即,又,,∴,若,则,∴在以为圆心,1为半径的圆上,若,则,∴问题转化为求在圆上的哪一点时,使最小,又,∴当且仅当三点共线且时,最小为.故选:B.【点睛】关键点点睛:由已知确定,,构成等边三角形,即可将问题转化为圆上动点到射线的距离最短问题.7、A【解析】由共面定理列式得,再根据对应系数相等计算.【详解】因为四点共面,设存在有序数对使得,则,即,所以得.故选:A8、A【解析】根据题意可表示出渐近线方程,进而可知的斜率,表示出直线方程,求出的坐标进而求得A点坐标,代入双曲线方程整理求得和的关系式,进而求得离心率【详解】:由题意设相应的渐近线:,则根据直线的斜率为,则的方程为,联立双曲线渐近线方程求出,则,,则的中点,把中点坐标代入双曲线方程中,即,整理得,即,求得,即离心率为,故答案为:9、A【解析】由已知可得,故选A.考点:1、双曲线及其方程;2、双曲线的离心率.【方法点晴】本题考查双曲线及其方程、双曲线的离心率.,涉及方程思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.由已知可得,利用双曲线的定义和双曲线的通径公式,可以降低计算量,提高解题速度.10、A【解析】先解不等式求得集合再求交集.【详解】解不等式得:,则有,解不等式,解得或,则有或,所以为.故选:A.11、B【解析】执行程序框图,第一次循环,,满足;第二次循环,,满足;第三次循环,,不满足,输出,故选B.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.12、A【解析】结合椭圆的定义、勾股定理列方程,化简求得,由此求得离心率.【详解】圆的圆心为,半径为.设左焦点为,连接,由于,所以,所以,所以,由于,所以,所以,,.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】画出几何体的直观图,利用已知条件,求解几何体的体积即可【详解】梯形ABCD:由题意可知空间几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的圆锥,几何体的体积为:故答案为:14、【解析】将点代入可得,从而得,再由裂项相消法可求解.【详解】由题意有,所以,所以数列的前10项和为:.故答案为:15、【解析】利用点到直线的距离公式即可得出【详解】利用点到直线的距离可得:故答案为:16、【解析】利用已知条件求出p,设出P的坐标,然后求解的表达式,利用基本不等式即可得出结论【详解】解:由题意可知:,设点,P到直线的距离为d,则,所以,当且仅当x时,的最小值为,此时,故答案为:【点睛】本题考查抛物线的简单性质的应用,基本不等式的应用,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据题意得到,,再根据求解即可.(2)首先设,,再根据求解即可.【小问1详解】由题意,,因为右顶点到右焦点的距离为,即,所以,则,所以椭圆的标准方程为.【小问2详解】设,,且根据椭圆的对称性得,联立方程组,整理得,解得,因为的面积为3,可得,解得.18、(1);(2)证明见解析.【解析】(1)在正方体中,平面,连接,则为与平面所成的角,在直角三角形,求出即可;(2)∵是正方体,又是空间垂直问题,∴易采用向量法,∴建立如图所示的空间直角坐标系,欲证,只须证,再用向量数量积公式求解即可.【小问1详解】在正方体中,平面,连接,则为与平面所成的角,又,,,∴;【小问2详解】如图,以为坐标原点,直线、、分别轴、轴、轴,建立空间直角坐标系.则∴,,∴,∴.19、(1)证明见解析;(2).【解析】(1)根据题意可得,根据等比数列的定义,即可得证;(2)由(1)可得,可得,利用累加法即可求得数列的通项公式.【详解】(1)因为,所以,即,所以是首项为1公比为3的等比数列(2)由(1)可知,所以因为,所以……,,各式相加得:,又,所以,又当n=1时,满足上式,所以20、(1)1;(2)y=x+7【解析】(1)设A(x1,y1),B(x2,y2),直线AB的斜率k==,代入即可求得斜率;(2)由(1)中直线AB的斜率,根据导数的几何意义求得M点坐标,设直线AB的方程为y=x+m,与抛物线联立,求得根,结合弦长公式求得AB,由知,|AB|=2|MN|,从而求得参数m.【详解】解:(1)设A(x1,y1),B(x2,y2),则x1≠x2,y1=,y2=,x1+x2=4,于是直线AB的斜率k===1(2)由y=,得y′=设M(x3,y3),由题设知=1,解得x3=2,于是M(2,1)设直线AB的方程为y=x+m,故线段AB的中点为N(2,2+m),|MN|=|m+1|将y=x+m代入y=得x2-4x-4m=0当Δ=16(m+1)>0,即m>-1时,x1,2=2±2从而|AB|=|x1-x2|=由题设知|AB|=2|MN|,即=2(m+1),解得m=7所以直线AB的方程为y=x+721、(1)(2)【解析】(1)由条件得,则利用等差数列的定义可得答案;(2)利用裂项求和求出,再根据可求出n.【小问1详解】由得,从而数列是以1为首项,1为公差的等差数列,所以;【小问2详解】由(1)得,由得又,所以.22、(1),,(2)第三组应抽人,第四组应抽人,第五组应抽人(3)【解析】(1)根据频率分布表的数据求出b,c,d的值;(2)三个组共有60人,从而利用分层抽
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年农业全产业链融合发展路径
- 2026年无人驾驶车辆测试技术培训
- 存储系统容灾备份建设手册
- 2026科技部监管中心招聘派遣制职工2人备考题库及一套完整答案详解
- 2026年RPA机器人流程自动化应用
- 财务资金安全培训课件
- 职业压力与职业病的医疗化防治
- 职业健康监护中认知功能的重要性
- 阳江2025年广东阳江市阳西县溪头镇人民政府招聘合同制禁毒工作人员笔试历年参考题库附带答案详解
- 邢台2025年河北邢台沙河市招聘中小学教师100人笔试历年参考题库附带答案详解
- 2026年及未来5年市场数据中国鲜鸡肉行业市场深度研究及投资规划建议报告
- 诊所相关卫生管理制度
- 2024-2025学年广东深圳实验学校初中部八年级(上)期中英语试题及答案
- 牛津版八年级英语知识点总结
- 2026中国电信四川公用信息产业有限责任公司社会成熟人才招聘备考题库含答案详解
- 国际话语体系构建与策略分析课题申报书
- 2026年深圳市离婚协议书规范范本
- 2026年自动驾驶政策法规报告
- 医疗数据伦理治理的国际经验借鉴
- 浙江省《检验检测机构技术负责人授权签字人》考试题及答案
- 子午流注在护理中的应用
评论
0/150
提交评论