版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届四川省天府名校高二数学第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义在区间上的函数满足:对恒成立,其中为的导函数,则A.B.C.D.2.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,,一辆车从甲地到乙地,恰好遇到2个红灯的概率为()A. B.C. D.3.某城市2017年的空气质量状况如下表所示:污染指数3060100110130140概率其中污染指数时,空气质量为优;时,空气质量为良;时,空气质量为轻微污染,该城市2017年空气质量达到良或优的概率为()A. B.C. D.4.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B.C. D.5.设椭圆()的左焦点为F,O为坐标原点.过点F且斜率为的直线与C的一个交点为Q(点Q在x轴上方),且,则C的离心率为()A. B.C. D.6.如图,平行六面体中,与的交点为,设,则选项中与向量相等的是()A. B.C. D.7.若函数有零点,则实数的取值范围是()A. B.C. D.8.函数,的值域为()A. B.C. D.9.已知双曲线E的渐近线为,则其离心率为()A. B.C. D.或10.若,,则有()A. B.C. D.11.已知m,n表示两条不同直线,表示两个不同平面.设有两个命题::若,则;:若,则.则下列命题中为真命题的是()A. B.C. D.12.已知公差为的等差数列满足,则()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.有一组数据:,其平均数是,则其方差是________.14.如图直线过点,且与直线和分别相交于,两点.(1)求过与交点,且与直线垂直的直线方程;(2)若线段恰被点平分,求直线的方程.15.已知函数,若在上是增函数,则实数的取值范围是________16.椭圆(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥P-ABCD中,PA平面ABCD,,∠BAD=120o,AB=AD=2,点M在线段PD上,且DM=2MP,平面(1)求证:平面MAC平面PAD;(2)若PA=6,求平面PAB和平面MAC所成锐二面角的余弦值18.(12分)阿基米德(公元前年—公元前年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.已知平面直角坐标系中,椭圆:的面积为,两焦点与短轴的一个顶点构成等边三角形.(1)求椭圆的标准方程;(2)过点的直线与交于不同的两点,求面积的最大值.19.(12分)(1)已知双曲线的离心率为2,求E的渐近线方程;(2)已知F是抛物线的焦点,是C上一点,且,求C的方程.20.(12分)已知:方程表示焦点在轴上的椭圆,:方程表示焦点在轴上的双曲线,其中.(1)若“”为真命题,求的取值范围:(2)若“”为假命题,“”为真命题,求的取值范围.21.(12分)已知点,圆.(1)若直线l过点M,且被圆C截得的弦长为,求直线l的方程;(2)设O为坐标原点,点N在圆C上运动,线段的中点为P,求点P的轨迹方程.22.(10分)某工厂修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米(1)求底面积,并用含x的表达式表示池壁面积;(2)怎样设计水池能使总造价最低?最低造价是多少?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分别构造函数,,,,利用导数研究其单调性即可得出【详解】令,,,,恒成立,,,,函数在上单调递增,,令,,,,恒成立,,函数在上单调递减,,.综上可得:,故选:D【点睛】函数的性质是高考的重点内容,本题考查的是利用函数的单调性比较大小的问题,通过题目中给定的不等式,分别构造两个不同的函数求导判出单调性从而比较函数值得大小关系.在讨论函数的性质时,必须坚持定义域优先的原则.对于函数实际应用问题,注意挖掘隐含在实际中的条件,避免忽略实际意义对定义域的影响2、B【解析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解【详解】由各路口信号灯工作相互独立,可得某人从甲地到乙地恰好遇到2次红灯的概率:故选:B3、A【解析】根据互斥事件的和的概率公式求解即可.【详解】由表知空气质量为优的概率是,由互斥事件的和的概率公式知,空气质量为良的概率为,所以该城市2017年空气质量达到良或优的概率,故选:A【点睛】本题主要考查了互斥事件,互斥事件和的概率公式,属于中档题.4、A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题5、D【解析】连接Q和右焦点,可知|OQ|=,可得∠FQ=90°,由得,写出两直线方程,联立可得Q点坐标,Q点坐标代入椭圆标准方程可得a、b、c关系﹒【详解】设椭圆右焦点为,连接Q,∵,,∴|OQ|=,∴∠FQ=90°,∵,∴,FQ过F(-c,0),Q过(c,0),则,由,∵Q在椭圆上,∴,又,解得,∴离心率故选:D6、B【解析】利用空间向量加减法、数乘的几何意义,结合几何体有,进而可知与向量相等的表达式.【详解】连接,如下图示:,.故选:B7、A【解析】设,则函数有零点转化为函数的图象与直线有交点,利用导数判断函数的单调性,即可求出【详解】设,定义域为,则,易知为单调递增函数,且所以当时,,递减;当时,,递增,所以所以,即故选:A【点睛】本题主要考查根据函数有零点求参数的取值范围,意在考查学生的转化能力,属于基础题8、D【解析】求出函数的导数,根据导数在函数最值上的应用,即可求出结果.【详解】因为,所以,令,又,所以或;所以当时,;当时,;所以在单调递增,在上单调递减;所以;又,,所以;所以函数的值域为.故选:D.9、D【解析】根据双曲线标准方程与渐近线的关系即可求解.【详解】当双曲线焦点在x轴上时,渐近线为,故离心率为;当双曲线焦点在y轴上时,渐近线为,故离心率为;故选:D.10、D【解析】对待比较的代数式进行作差,利用不等式基本性质,即可判断大小.【详解】因为,又,,故,则,即;因为,又,,故,则;综上所述:.故选:D.11、B【解析】利用直线与平面,平面与平面的位置关系判断2个命题的真假,再利用复合命题的真值表判断选项的正误即可【详解】,表示两条不同直线,,表示两个不同平面:若,,则也可能,也可能与相交,所以是假命题,为真命题;:令直线的方向向量为,直线的方向向量为,若,则,则,所以是真命题,所以为假命题;所以为假命题,是真命题,为假命题,是真命题,所以为假命题故选:12、C【解析】根据等差数列前n项和,即可得到答案.【详解】∵数列是公差为的等差数列,∴,∴.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】先按照平均数算出a,再按照方差的定义计算即可。【详解】∵,所以,方差,故答案为:2.14、(1);(2).【解析】本题考查直线方程的基本求法:垂直直线的求法、点关于点对称、点在直线上的待定系数法【详解】(1)由题可得交点,所以所求直线方程为,即;(2)设直线与直线相交于点,因为线段恰被点平分,所以直线与直线的交点的坐标为将点,的坐标分别代入,的方程,得方程组解得由点和点及两点式,得直线的方程为,即【点睛】直线的考法主要以点的对称和直线的平行与垂直为主.点关于点的对称,点关于直线的对称,直线关于直线的对称,是重点考察内容15、【解析】根据函数在上是增函数,分段函数在整个定义域内单调,则在每个函数内单调,注意衔接点的函数值.【详解】解:因为函数在上是增函数,所以在区间上是增函数且在区间上也是增函数,对于函数在上是增函数,则;①对于函数,(1)当时,,外函数为定义域内的减函数,内函数在上是增函数,根据复合函数“同增异减”可得时函数在区间上是减函数,不符合题意,故舍去,(2)当时,外函数为定义域内的增函数,要使函数在区间上是增函数,则内函数在上也是增函数,且对数函数真数大于0,即在上也要恒成立,所以,又,所以,②又在上是增函数则在衔接点处函数值应满足:,化简得,③由①②③得,,所以实数的取值范围是.故答案为:.【点睛】方法点睛:利用单调性求参数方法如下:(1)依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;(2)需注意若函数在区间上是单调的,则该函数在此区间的任意子集上也是单调的;(3)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值16、【解析】本题着重考查等比中项的性质,以及椭圆的离心率等几何性质,同时考查了函数与方程,转化与化归思想.利用椭圆及等比数列的性质解题.由椭圆的性质可知:,,.又已知,,成等比数列,故,即,则.故.即椭圆的离心率为.【点评】求双曲线的离心率一般是通过已知条件建立有关的方程,然后化为有关的齐次式方程,进而转化为只含有离心率的方程,从而求解方程即可.体现考纲中要求掌握椭圆的基本性质.来年需要注意椭圆的长轴,短轴长及其标准方程的求解等.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)连接BD交AC于点E,连接ME,由所给条件推理出CA⊥AD,进而得CA⊥平面PAD,证得结论(2)首先以A为原点,射线AC,AD,AP分别为x,y,z轴非负半轴建立空间直角坐标系,再利用向量法求解二面角即可【小问1详解】(1)连接BD交AC于点E,连接ME,如图所示:∵平面MAC,PB平面PBD,平面PBD平面MAC=ME,∴,,则BC=1,而AB=2,,,∴AC2+BC2=4=AB2,∠ACB=90º,∠CAD=90º,即CA⊥AD,又PA⊥平面ABCD,CA平面ABCD,∴PA⊥CA,又PAAD=A,∴CA⊥平面PAD,而CA平面MAC,∴平面MAC⊥平面PAD【小问2详解】(2)如图所示:以A为原点,射线AC,AD,AP分别为x,y,z轴非负半轴建立空间直角坐标系,则,∴,设平面PAB和平面MAC的一个法向量分别为,平面PAB和平面MAC所成锐二面角为,∴,,∴.18、(1);(2).【解析】(1)根据题意计算得到,得到椭圆方程.(2)设直线的方程为,联立方程,根据韦达定理得到,,表示出,解得答案.【详解】(1)依题意有解得所以椭圆的标准方程是.(2)由题意直线的斜率不能为,设直线的方程为,由方程组得,设,,所以,,所以,所以,令(),则,,因为在上单调递增,所以当,即时,面积取得最大值为.【点睛】本题考查了椭圆方程,椭圆内三角形面积的最值问题,意在考查学生的计算能力和综合应用能力.19、(1);(2).【解析】(1)由可知,即可求出,故可得渐近线方程;(2)利用点在抛物线上及其抛物线的定义列方程求解即可.【详解】(1)∵E的离心率,∴,即,解得,故E的渐近线方程为.(2)∵是C上一点,∴①,由抛物线的定义可知②,两式联立可得,解得则C的方程为.20、(1)或(2)【解析】(1)先假设命题为真命题,求出的取值范围,为真命题,取补集即可(2)假设命题为真命题,求出的取值范围,根据题意,则命题假设和命题一真一假,分类讨论求的取值范围【小问1详解】解:若为真命题,则,解得,若“”为真命题,则为假命题,或;【小问2详解】若为真命题,则解得,若“”为假命题,则“”为真命题,则与一真一假,①若真假,则解得,②若真假,则解得,综上所述,,即的取值范围为.21、(1)或(2)【解析】(1)由直线被圆C截得的弦长为,求得圆心到直线的距离为,分直线的斜率不存在和斜率存在两种情况讨论,结合点到直线的距离公式,列出方程,即可求解.(2)设点,,根据线段的中点为,求得,结合在圆上,代入即可求解.【小问1详解】解:由题意,圆,可得圆心,半径,因为直线被圆C截得的弦长为,则圆心到直线的距离为,当直线的斜率不存在时,此时直线的方程为,满足题意;当直线的斜率存在时,设直线的方程为,即,则,解得,即,综上可得,所求直线的方程为或.【小问2详解】解:设点,因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 老龄化基层医疗的医养结合社会参与的服务平台功能优化
- 汽车零部件制造设备操作与维护手册
- 无人机飞行记录与数据管理手册
- 宠物训练比赛赞助合同协议(2025年权益保障)
- 产品设计全生命周期管理手册
- 长途运输储存集装箱操作与管理手册
- 老年高血压患者社会参与健康管理方案
- 低速汽车货箱制造与安装规范手册
- 公司供应商管理评估规范流程手册
- 老年高血压合并骨质疏松双膦酸盐与降压方案
- 听力学声学基础
- 房屋托管合同范本 最详细版
- 海水淡化用阀门
- 隐患排查治理奖惩台账
- 2023年公务员年度考核测评表
- LY/T 2778-2016扶桑绵粉蚧检疫技术规程
- GB/T 5285-2017六角头自攻螺钉
- GB/T 36377-2018计量器具识别编码
- GB/T 26522-2011精制氯化镍
- GB/T 26332.3-2015光学和光子学光学薄膜第3部分:环境适应性
- GB/T 17626.4-2008电磁兼容试验和测量技术电快速瞬变脉冲群抗扰度试验
评论
0/150
提交评论