版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省鄞州中学2026届数学高二上期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“直线和直线垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.一动圆与圆外切,而与圆内切,那么动圆的圆心的轨迹是()A.椭圆 B.双曲线C.抛物线 D.双曲线的一支3.在空间直角坐标系中,已知点,,则线段的中点坐标与向量的模长分别是()A.;5 B.;C.; D.;4.某班对期中成绩进行分析,利用随机数表法抽取样本时,先将60个同学的成绩按01,02,03,……,60进行编号,然后从随机数表第9行第5列的数1开始向右读,则选出的第6个个体是()(注:如下为随机数表的第8行和第9行)6301637859169555671998105071751286735833211234297864560782524507443815510013A.07 B.25C.42 D.525.已知公差为的等差数列满足,则()A B.C. D.6.已知双曲线的左、右焦点分别为,,为坐标原点,为双曲线在第一象限上的点,直线,分别交双曲线的左,右支于另一点,,若,且,则双曲线的离心率为()A. B.3C.2 D.7.执行下图所示的程序框图,则输出的值为()A.5 B.6C.7 D.88.、是椭圆的左、右焦点,点在椭圆上,,过作的角平分线的垂线,垂足为,则的长为A.1 B.2C.3 D.49.已知,则“”是“”的()A.充分不必要条件 B.充要条件C.必要不充分条件 D.既不充分也不必要条件10.某学校随机抽取了部分学生,对他们每周使用手机的时间进行统计,得到如下的频率分布直方图.则下列说法:①;②若抽取100人,则平均用时13.75小时;③若从每周使用时间在,,三组内的学生中用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为3.其中正确的序号是()A.①② B.①③C.②③ D.①②③11.椭圆=1的一个焦点为F,过原点O作直线(不经过焦点F)与椭圆交于A,B两点,若△ABF的面积是20,则直线AB的斜率为()A. B.C. D.12.已知抛物线的焦点为,点在抛物线上,且,则的横坐标为()A.1 B.C.2 D.3二、填空题:本题共4小题,每小题5分,共20分。13.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数.他们根据沙粒或小石子所排列的形状把数分成许多类,下图中第一行的称为三角形数,第二行的称为五边形数,则三角形数的第10项为__________,五边形数的第项为__________.14.设,则动点P的轨迹方程为________15.某班有位同学,将他们从至编号,现用系统抽样的方法从中选取人参加文艺演出,抽出的编号从小到大依次排列,若排在第一位的编号是,那么第四位的编号是______16.棱长为的正方体的顶点到截面的距离等于__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设点P是曲线上的任意一点,k是该曲线在点P处的切线的斜率(1)求k的取值范围;(2)求当k取最大值时,该曲线在点P处的切线方程18.(12分)在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.(1)求证:平面平面;(2)若,求直线与所成角的余弦值.19.(12分)已知二次曲线的方程:(1)分别求出方程表示椭圆和双曲线的条件;(2)若双曲线与直线有公共点且实轴最长,求双曲线方程;(3)为正整数,且,是否存在两条曲线,其交点P与点满足,若存在,求的值;若不存在,说明理由20.(12分)我国是世界最大的棉花消费国、第二大棉花生产国,其中,新疆棉产量约占国内产量的87%,消费量约占国内消费量的67%.新疆棉的品质高:纤维柔长,洁白光泽,弹性良好,各项质量指标均超国家标准.尤其是被授予“中国彩棉之乡”称号的新疆建设兵团一四八团生产的天然彩棉,株型紧凑,吐絮集中,品质优良,色泽纯正、艳丽,手感柔软,适合中高档纺织.新疆彩棉根据色泽、手感、纤维长度等评分指标打分,得分在区间内分别对应四级、三级、二级、一级.某经销商从采购的新蚯彩棉中随机抽取20包(每包1kg),得分数据如图(1)试统计各等级数量,并估计各等级在该批彩棉中所占比例;(2)用样本估计总体,经销商参考以下两种销售方案进行销售:方案1:不分等级卖出,单价为1.79万元/吨;方案2:分等级卖出,不同等级的新疆彩棉售价如下表所示:等级一级二级三级四级售价(万元/吨)若从经销商老板的角度考虑,采用哪种方案较好?并说明理由21.(12分)噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了解声音强度D(单位:)与声音能量I(单位:)之间的关系,将测量得到的声音强度D和声音能量I的数据作了初步处理,得到如图所示的散点图:参考数据:其中,,,,,,,,(1)根据散点图判断,与哪一个适宜作为声音强度D关于声音能量I的回归模型?(给出判断即可,不必说明理由)(2)求声音强度D关于声音能量I回归方程(3)假定当声音强度D大于时,会产生噪声污染.城市中某点P处共受到两个声源的影响,这两个声通的声音能量分别是和,且.已知点P处的声音能量等于与之和.请根据(2)中的回归方程,判断点P处是否受到噪声污染,并说明理由参考公式:对于一组数据,其回归直线斜率和截距的最小二乘估计公式分别为:22.(10分)已知椭圆上的点到焦点的最大距离为3,离心率为.(1)求椭圆的标准方程;(2)设直线与椭圆交于不同两点,与轴交于点,且满足,若,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】因为直线和直线垂直,所以或,再根据充分必要条件的定义判断得解.【详解】因为“直线和直线垂直,所以或.当时,直线和直线垂直;当直线和直线垂直时,不一定成立.所以是直线和直线垂直的充分不必要条件,故选:A2、A【解析】依据定义法去求动圆的圆心的轨迹即可解决.【详解】设动圆的半径为r,又圆半径为1,圆半径为8,则,,可得,又则动圆的圆心的轨迹是以为焦点长轴长为9的椭圆.故选:A3、B【解析】根据给定条件利用中点坐标公式及空间向量模长的坐标表示计算作答.【详解】因点,,所以线段的中点坐标为,.故选:B4、D【解析】从指定位置起依次读两位数码,超出编号的数删除.【详解】根据题意,从随机数表第9行第5列的数1开始向右读,依次选出的号码数是:12,34,29,56,07,52;所以第6个个体是52.故选:D.5、C【解析】根据等差数列前n项和,即可得到答案.【详解】∵数列是公差为的等差数列,∴,∴.故选:C6、D【解析】由双曲线的定义可设,,由平面几何知识可得四边形为平行四边形,三角形,用余弦定理,可得,的方程,再由离心率公式可得所求值【详解】由双曲线的定义可得,由,可得,,结合双曲线性质可以得到,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故,对三角形,用余弦定理,得到,结合,可得,,,代入上式子中,得到,即,结合离心率满足,即可得出,故选:D【点睛】本题考查求双曲线的离心率,熟记双曲线的简单性质即可,属于常考题型.7、C【解析】直接按照程序框图运行即可得正确答案.【详解】当时,不成立,时,不成立,时,不成立,时,不成立,时,不成立,时,不成立,时,不成立,时,成立,输出的值为,故选:C.8、A【解析】延长交延长线于N,则选:A.【点睛】涉及两焦点问题,往往利用椭圆定义进行转化研究,而角平分线性质可转化到焦半径问题,两者切入点为椭圆定义.9、B【解析】求得中的取值范围,由此确定充分、必要条件.【详解】,,所以“”是“”的充要条件.故选:B10、B【解析】根据频率分布直方图中小矩形的面积和为1可求出,再求出频率分布直方图的平均值,即为抽取100人的平均值的估计值,再利用分层抽样可确定出使用时间在内的学生中选取的人数为3.【详解】,故①正确;根据频率分布直方图可估计出平均值为,所以估计抽取100人的平均用时13.75小时,②的说法太绝对,故②错误;每周使用时间在,,三组内的学生的比例为,用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为,故③正确.故选:B.11、A【解析】分情况讨论当直线AB的斜率不存在时,可求面积,检验是否满足条件,当直线AB的斜率存在时,可设直线AB的方程y=kx,联立椭圆方程,可求△ABF2的面积为S=2代入可求k【详解】由椭圆=1,则焦点分别为F1(-5,0),F2(5,0),不妨取F(5,0)①当直线AB的斜率不存在时,直线AB的方程为x=0,此时AB=4,=AB•5=×5=10,不符合题意;②可设直线AB的方程y=kx,由,可得(4+9k2)x2=180,∴xA=6,yA=,∴△ABF2的面积为S=2=2××5×=20,∴k=±故选:A12、C【解析】利用抛物线的定义转化为到准线的距离,即可求得.【详解】抛物线的焦点坐标为,准线方程为,,∴,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】对于三角形数,根据图形寻找前后之间的关系,从而归纳出规律利用求和公式即得,对于五边形数根据图形寻找前后之间的关系,然后利用累加法可得通项公式.【详解】由题可知三角形数的第1项为1,第2项为3=1+2,第3项为6=1+2+3,第4项为10=1+2+3+4,,因此,第10项为;五边形数的第1项为,第2项为,第3项为,第4项为,…,因此,,所以当时,,当时也适合,故,即五边形数的第项为.故答案为:55;.14、【解析】根据双曲线的定义可得答案.【详解】因为,所以动点P的轨迹是焦点为A,B,实轴长为4的双曲线的上支.因为,所以,所以动点P的轨迹方程为故答案为:.15、29【解析】根据给定信息利用系统抽样的特征直接计算作答.【详解】因系统抽样是等距离抽样,依题意,相邻两个编号相距,所以第四位的编号是.故答案为:2916、【解析】根据勾股定理可以计算出,这样得到是直角三角形,利用等体积法求出点到的距离.【详解】解:如图所示,在三棱锥中,是三棱锥的高,,在中,,,,所以是直角三角形,,设点到的距离为,.故A到平面的距离为故答案为:【点睛】本题考查了点到线的距离,利用等体积法求出点到面的距离.是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)先求导数再求最值即可求解答案;(2)由(1)确定切点,从而也确定的斜率就可以求切线.【小问1详解】设,因为,所以,所以k的取值范围为【小问2详解】由(1)知,此时,即,所以此时曲线在点P处的切线方程为18、(1)证明见解析;(2);【解析】(1)证明,利用面面垂直的性质可得出平面,再利用面面垂直的判定定理可证得平面平面;(2)连接,以点为坐标原点,、、所在直线分别为轴建立空间直角坐标系,设,根据可得出,求出的值,利用空间向量法可求得直线与所成角的余弦值.【详解】(1)为的中点,且,则,又因为,则,故四边形为平行四边形,因为,故四边形为矩形,所以,平面平面,平面平面,平面,平面,因为平面,因此,平面平面;(2)连接,由(1)可知,平面,,为的中点,则,以点为坐标原点,所在直线分别为轴建立空间直角坐标系,则、、、、,设,,因为,则,解得,,,则.因此,直线与所成角的余弦值为.19、(1)时,方程表示椭圆,时,方程表示双曲线;(2);(3)存在,且或或.【解析】(1)当且仅当分母都为正,且不相等时,方程表示椭圆;当且仅当分母异号时,方程表示双曲线(2)将直线与曲线联立化简得:,利用双曲线与直线有公共点,可确定的范围,从而可求双曲线的实轴,进而可得双曲线方程;(3)由(1)知,,是椭圆,,,,是双曲线,结合图象的几何性质,任意两椭圆之间无公共点,任意两双曲线之间无公共点,从而可求【详解】(1)当且仅当时,方程表示椭圆;当且仅当时,方程表示双曲线(2)化简得:△或所以双曲线的实轴为,当时,双曲线实轴最长为此时双曲线方程为(3)由(1)知,,是椭圆,,,,是双曲线,结合图象的几何性质任意两椭圆之间无公共点,任意两双曲线之间无公共点设,,,2,,,6,7,由椭圆与双曲线定义及;所以所以这样的,存在,且或或【点睛】方法点睛:曲线方程的确定可分为两类:若已知曲线类型,则采用待定系数法;若曲线类型未知时,则可利用直接法、定义法、相关点法等求解或者利用分类讨论思想求解.20、(1)答案见解析;(2)答案、理由见解析【解析】(1)根据茎叶图计算出数量以及比例.(2)计算出方案的彩棉售价平均值,由此作出决策.【详解】(1)得分在(0,25]内的有19,21,共2个,所以四缓彩棉在该批彩棉中所占比例为;得分在(25,50]内的有27,31,36,42,45,48,共6个,所以三级彩棉在该批彩棉中所占比例为;得分在(50,75]内的有51,51,58,63,65,68,73,共7个,所以二级彩棉在该批彩棉中所占比例为;得分在(75,100]内的有76,79,83,85,92,共5个,所以一级彩棉在该批彩棉中所占比例(2)解答一:选用方案2,理由如下:方案1:不分等级卖出,单价为1.79万元/吨;设方案2的彩棉售价平均值为万元/吨,则因为,所以从经销商老板角度考虑,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年护理学(护师)通关·习题细选附答案
- 2026年润滑油厂油品泄漏火灾事故应急救援预案演练方案
- 防腐蚀工程技术支持方案
- 2025-2030智慧商圈产业发展分析及政府战略规划实施研究报告
- 2025至2030中国在线医疗服务平台用户需求与政策环境研究报告
- 小区地形施工方案(3篇)
- 手表清仓活动策划方案(3篇)
- 美式家具活动方案策划(3篇)
- 野营俱乐部活动策划方案(3篇)
- 盾构基础施工方案(3篇)
- 2024-2025学年度高一英语下学期期中试卷(北师大版含答案)
- 银行从业者观《榜样》心得体会
- 农村年底活动方案
- 2024届山东省威海市高三二模数学试题(解析版)
- 设备管理奖罚管理制度
- LINE6效果器HD300中文说明书
- 2025年航运行业安全生产费用提取和使用计划
- 纳米纤维凝胶隔热材料的应用研究进展
- 蟹苗买卖合同协议
- 2025年社区养老服务补贴政策及申领方法
- 胸外科手术围手术期的护理
评论
0/150
提交评论