甘肃省嘉峪关市2026届高二上数学期末经典试题含解析_第1页
甘肃省嘉峪关市2026届高二上数学期末经典试题含解析_第2页
甘肃省嘉峪关市2026届高二上数学期末经典试题含解析_第3页
甘肃省嘉峪关市2026届高二上数学期末经典试题含解析_第4页
甘肃省嘉峪关市2026届高二上数学期末经典试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省嘉峪关市2026届高二上数学期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等比数列的公比为,则“”是“对于任意正整数n,都有”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件2.在正方体中,下列几种说法不正确的是A. B.B1C与BD所成的角为60°C.二面角的平面角为 D.与平面ABCD所成的角为3.是首项和公差均为3的等差数列,如果,则n等于()A.671 B.672C.673 D.6744.设抛物线C:的焦点为,准线为.是抛物线C上异于的一点,过作于,则线段的垂直平分线()A.经过点 B.经过点C.平行于直线 D.垂直于直线5.如果,,…,是抛物线C:上的点,它们的横坐标依次为,,…,,点F是抛物线C的焦点.若=10,=10+n,则p等于()A.2 B.C. D.46.在等比数列中,,则等于()A. B.C. D.7.椭圆的焦点为、,上顶点为,若,则()A B.C. D.8.若,则()A.1 B.0C. D.9.已知数列的前项和为,满足,,,则()A. B.C.,,成等差数列 D.,,成等比数列10.如图,在长方体中,,,则直线和夹角的余弦值为()A. B.C. D.11.已知点是椭圆上的任意点,是椭圆的左焦点,是的中点,则的周长为()A. B.C. D.12.抛物线C:的焦点为F,P,R为C上位于F右侧的两点,若存在点Q使四边形PFRQ为正方形,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.直线被圆截得的弦长为_______14.已知,分别是双曲线的左、右焦点,P是其一条渐近线上的一点,且以为直径的圆经过点P,则的面积为___________.15.已知抛物线C:,经过点P(4,1)的直线l与抛物线C相交于A,B两点,且点P恰为AB的中点,F为抛物线的焦点,则______16.若关于的不等式恒成立,则实数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知某中学高二物化生组合学生的数学与物理的水平测试成绩抽样统计如下表:若抽取了名学生,成绩分为A(优秀),B(良好),C(及格)三个等级,设,分别表示数学成绩与物理成绩,例如:表中物理成绩为A等级的共有(人),数学成绩为B等级且物理成绩为C等级的共有8人,已知与均为A等级的概率是0.07(1)设在该样本中,数学成绩的优秀率是30%,求,的值;(2)已知,,求数学成绩为A等级的人数比C等级的人数多的概率18.(12分)男子10米气步枪比赛规则如下:在资格赛中,射手在距离靶子10米处,采用立姿,在105分钟内射击60发子弹,总环数排名前8名的射手进入决赛;在决赛中,每位射手仅射击10发子弹.已知甲乙两名运动员均进入了决赛,资格赛中的环数情况整理得下表:环数频数678910甲2352327乙5502525以各人这60发子弹环数的频率作为决赛中各发子弹环数发生的概率,甲乙两人射击互不影响(1)求甲运动员在决赛中前2发子弹共打出1次10环的概率;(2)决赛打完第9发子弹后,甲比乙落后2环,求最终甲能战胜乙(甲环数大于乙环数)的概率19.(12分)某保险公司根据官方公布的历年营业收入,制成表格如下:表1年份2011201220132014201520162017201820192020年份序号x12345678910营业收入y(亿元)0.529.3633.6132352571912120716822135由表1,得到下面的散点图:根据已有的函数知识,某同学选用二次函数模型(b和a是待定参数)来拟合y和x的关系.这时,可以对年份序号做变换,即令,得,由表1可得变换后的数据见表2.表2T149162536496481100Y0.529.3633.6132352571912120716822135(1)根据表中数据,建立y关于t的回归方程(系数精确到个位数);(2)根据(1)中得到的回归方程估计2021年的营业收入,以及营业收入首次超过4000亿元的年份.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.参考数据:.20.(12分)已知函数.(1)求的导数;(2)求函数的图象在点处的切线方程.21.(12分)抛物线的焦点为F,过点F的直线交抛物线于A,B两点(1)若,求直线AB的斜率;(2)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值22.(10分)已知二次函数.(1)若时,不等式恒成立,求实数a的取值范围;(2)解关于x的不等式(其中).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】结合等比数列的单调性,根据充分必要条件的定义判断【详解】若,,则,,充分性不成立;反过来,若,,则时,必要性不成立;因此“”是“对于任意正整数n,都有”的既不充分也不必要条件.故选:D2、D【解析】在正方体中,利用线面关系逐一判断即可.【详解】解:对于A,连接AC,则AC⊥BD,A1C1∥AC,∴A1C1⊥BD,故A正确;对于B,∵B1C∥D,即B1C与BD所成的角为∠DB,连接△DB为等边三角形,∴B1C与BD所成的角为60°,故B正确;对于C,∵BC⊥平面A1ABB1,A1B⊂平面A1ABB1,∴BC⊥A1B,∵AB⊥BC,平面A1BC∩平面BCD=BC,A1B⊂平面A1BC,AB⊂平面BCD,∴∠ABA1是二面角A1﹣BC﹣D的平面角,∵△A1AB是等腰直角三角形,∴∠ABA1=45°,故C正确;对于D,∵C1C⊥平面ABCD,AC1∩平面ABCD=A,∴∠C1AC是AC1与平面ABCD所成的角,∵AC≠C1C,∴∠C1AC≠45°,故D错误故选D【点睛】本题考查了线面的空间位置关系及空间角,做出图形分析是关键,考查推理能力与空间想象能力3、D【解析】根据题意,求得数列的通项公式,代入数据,即可得答案.【详解】因为数列为等差数列,所以,令,解得.故选:D4、A【解析】依据题意作出焦点在轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段的垂直平分线经过点,即可求解.【详解】如图所示:因为线段的垂直平分线上的点到的距离相等,又点在抛物线上,根据定义可知,,所以线段的垂直平分线经过点.故选:A.5、A【解析】根据抛物线定义得个等式,相加后,利用已知条件可得结果.【详解】抛物线C:的准线为,根据抛物线的定义可知,,,,,所以,所以,所以,所以.故选:A【点睛】关键点点睛:利用抛物线的定义解题是解题关键,属于基础题.6、C【解析】根据,然后与,可得,最后简单计算,可得结果.【详解】在等比数列中,由所以,又,所以所以故选:C【点睛】本题考查等比数列的性质,重在计算,当,在等差数列中有,在等比数列中,灵活应用,属基础题.7、C【解析】分析出为等边三角形,可得出,进而可得出关于的等式,即可解得的值.【详解】在椭圆中,,,,如下图所示:因为椭圆的上顶点为点,焦点为、,所以,,为等边三角形,则,即,因此,.故选:C.8、C【解析】由结合二项式定理可得出,利用二项式系数和公式可求得的值.【详解】,当且时,,因此,.故选:C.【点睛】关键点睛:本题考查二项式系数和的计算,解题的关键是熟悉二项式系数和公式,考查学生的转化能力与计算能力,属于基础题.9、C【解析】写出数列前几项,观察规律,找到数列变化的周期,再依次去判断各项的说法即可解决.【详解】数列中,,,,则此数列为1,2,2,1,,,1,2,2,1,,,1,2,2,1,,,…即数列的各项是周期为6数值循环重复的一列数,选项A:,,则.判断错误;选项B:由,可知当时,.判断错误;选项C:,则,即,,成等差数列.判断正确;选项D:,,则,,即,,不能构成等比数列.判断错误.故选:C10、D【解析】如图建立空间直角坐标系,分别求出的坐标,由空间向量夹角公式即可求解.【详解】如图:以为原点,分别以,,所在的直线为,,轴建立空间直角坐标系,则,,,,所以,,所以,所以直线和夹角的余弦值为,故选:D.11、A【解析】设椭圆另一个焦点为,连接,利用中位线的性质结合椭圆的定义可求得结果.【详解】在椭圆中,,,,如图,设椭圆的另一个焦点为,连接,因为、分别为、的中点,则,则的周长为,故选:A.12、A【解析】不妨设,不妨设,则,利用抛物线的对称性及正方形的性质列出的方程求得后可得结论【详解】如图所示,设,不妨设,则,由抛物线的对称性及正方形的性质可得,解得(正数舍去),所以故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出圆心到直线的距离,结合半径,利用勾股定理可得答案.【详解】的圆心坐标为,,圆心到直线的距离,则直线被圆截得的弦长为:故答案为:14、【解析】先得出渐近线方程和圆的方程,然后解出点P的纵坐标,进而求出面积.【详解】由题意,渐近线方程为:,,圆的方程为:,联立:,所以.故答案为:.15、9【解析】过A、、作准线的垂线且分别交准线于点、、,根据抛物线的定义可知,由梯形的中位线的性质得出,进而可求出的结果.【详解】由抛物线,可知,则,所以抛物线的焦点坐标为,如图,过点A作垂直于准线交准线于,过点作垂直于准线交准线于,过点作垂直于准线交准线于,由抛物线的定义可得,再根据为线段的中点,而四边形为梯形,由梯形的中位线可知,则,所以.故答案为:9.16、【解析】设由题可知,当时,可得适合题意,当时,可求函数的最小值即得,当时不合题意,即得.【详解】设,由题可知,∴,当时,,适合题意,所以,当时,令,则,此时时,,单调递减,,,单调递增,∴,又,∴,∴,即,解得,当时,时,,,故的值有正有负,不合题意;综上,实数的取值范围是.故答案为:.【点睛】关键点点睛:本题考查不等式恒成立求参数的取值范围,设由题可知,当时,利用导数可求函数的最小值,结合,可得,进而通过解,即得.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)根据与均为A等级的概率是0.07,求得值,再根据数学成绩的优秀率是30%求得值,最后利用抽取的总人数求出值即可;(2)根据,,,写出满足条件得基本事件,找出其中的基本事件,利用古典概型的公式求出概率即可.【小问1详解】由题意知,解得,,解得,由已知得,解得.【小问2详解】由,,,可知,则试验的样本空间,共9个样本点其中包含的样本点有共4个,故所求概率18、(1)(2)【解析】(1)先求出甲运动员打中10环的概率,从而可求出甲运动员在决赛中前2发子弹共打出1次10环的概率;(2)由于甲比乙落后2环,所以甲要获胜,则乙6环,甲9环或10环,或者乙7环,甲10环,再利用独立事件和互斥事件的概率公式求解即可【小问1详解】由表中的数据可得甲运动员打中10环的概率为,所以甲运动员在决赛中前2发子弹共打出1次10环的概率为【小问2详解】因为甲比乙落后2环,所以甲要获胜,则乙打中6环,甲打中9环或10环,或者乙打中7环,甲打中10环,因为由题意可得乙打中6环的概率和打中7环的概率均为,甲打中9环的概率为,打中10环的概率为,且甲乙两人射击互不影响所以最终甲能战胜乙的概率为19、(1);(2)估计2021年的营业收入约为2518亿元,估计营业收入首次超过4000亿元的年份为2024年.【解析】(1)根据的公式,将题干中的数据代入,即得解;(2)代入,可估计2021年的营业收入;令,可求解的范围,继而得到的范围,即得解【详解】(1),,故回归方程为.(2)2021年对应的t的值为121,营业收入,所以估计2021年的营业收入约为2518亿元.依题意有,解得,故.因为,所以估计营业收入首次超过4000亿元的年份序号为14,即2024年.20、(1);(2).【解析】(1)利用基本初等函数的导数公式及求导法则直接计算作答.(2)求出,再利用导数的几何意义求出切线方程作答.【小问1详解】函数定义域为,所以函数.【小问2详解】由(1)知,,而,于是得,即,所以函数的图象在点处的切线方程是.21、(1);(2)面积最小值是4【解析】本题主要考查抛物线的标准方程及其几何性质、直线与圆锥曲线的位置关系、直线的斜率等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,依题意F(1,0),设直线AB的方程为.将直线AB的方程与抛物线的方程联立,得,由此能够求出直线AB的斜率;第二问,由点C与原点O关于点M对称,得M是线段OC的中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于,由此能求出四边形OACB的面积的最小值试题解析:(1)依题意知F(1,0),设直线AB方程为.将直线AB的方程与抛物线的方程联立,消去x得.设,,所以,.①因为,所以.②联立①和②,消去,得所以直线AB的斜率是(2)由点C与原点O关于点M对称,得M是线段OC中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于因为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论