版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初二因式分解减法题目及答案姓名:_____ 准考证号:_____ 得分:__________
初二因式分解减法题目及答案
一、选择题(每题2分,总共10题)
1.下列哪个选项是多项式x^2-4的因式分解结果?
A.(x+2)(x-2)
B.(x+4)(x-1)
C.(x-2)^2
D.(x+2)^2
2.多项式9a^2-16可以分解为:
A.(3a+4)(3a-4)
B.(9a+16)(a-1)
C.(3a+4)^2
D.(9a-16)(a+1)
3.下列哪个选项是多项式4x^2-9y^2的因式分解结果?
A.(2x+3y)(2x-3y)
B.(4x+9y)(x-1)
C.(2x+3y)^2
D.(4x-9y)(x+1)
4.多项式a^2-25可以分解为:
A.(a+5)(a-5)
B.(a+25)(a-1)
C.(a-5)^2
D.(a+5)^2
5.下列哪个选项是多项式16m^2-9n^2的因式分解结果?
A.(4m+3n)(4m-3n)
B.(16m+9n)(m-1)
C.(4m+3n)^2
D.(16m-9n)(m+1)
6.多项式25p^2-4q^2可以分解为:
A.(5p+2q)(5p-2q)
B.(25p+4q)(p-1)
C.(5p+2q)^2
D.(25p-4q)(p+1)
7.下列哪个选项是多项式49r^2-36s^2的因式分解结果?
A.(7r+6s)(7r-6s)
B.(49r+36s)(r-1)
C.(7r+6s)^2
D.(49r-36s)(r+1)
8.多项式9t^2-16u^2可以分解为:
A.(3t+4u)(3t-4u)
B.(9t+16u)(t-1)
C.(3t+4u)^2
D.(9t-16u)(t+1)
9.下列哪个选项是多项式64v^2-25w^2的因式分解结果?
A.(8v+5w)(8v-5w)
B.(64v+25w)(v-1)
C.(8v+5w)^2
D.(64v-25w)(v+1)
10.多项式121x^2-49y^2可以分解为:
A.(11x+7y)(11x-7y)
B.(121x+49y)(x-1)
C.(11x+7y)^2
D.(121x-49y)(x+1)
二、填空题(每题2分,总共10题)
1.多项式x^2-9的因式分解结果是__________。
2.多项式4y^2-1的因式分解结果是__________。
3.多项式9z^2-16的因式分解结果是__________。
4.多项式16a^2-25的因式分解结果是__________。
5.多项式25b^2-49的因式分解结果是__________。
6.多项式49c^2-81的因式分解结果是__________。
7.多项式9d^2-4e^2的因式分解结果是__________。
8.多项式16f^2-25g^2的因式分解结果是__________。
9.多项式25h^2-36i^2的因式分解结果是__________。
10.多项式49j^2-64k^2的因式分解结果是__________。
三、多选题(每题2分,总共10题)
1.下列哪些选项是多项式x^2-16的因式分解结果?
A.(x+4)(x-4)
B.(x+16)(x-1)
C.(x-4)^2
D.(x+4)^2
2.下列哪些选项是多项式9a^2-4b^2的因式分解结果?
A.(3a+2b)(3a-2b)
B.(9a+4b)(a-1)
C.(3a+2b)^2
D.(9a-4b)(a+1)
3.下列哪些选项是多项式16c^2-25d^2的因式分解结果?
A.(4c+5d)(4c-5d)
B.(16c+25d)(c-1)
C.(4c+5d)^2
D.(16c-25d)(c+1)
4.下列哪些选项是多项式49e^2-36f^2的因式分解结果?
A.(7e+6f)(7e-6f)
B.(49e+36f)(e-1)
C.(7e+6f)^2
D.(49e-36f)(e+1)
5.下列哪些选项是多项式25g^2-64h^2的因式分解结果?
A.(5g+8h)(5g-8h)
B.(25g+64h)(g-1)
C.(5g+8h)^2
D.(25g-64h)(g+1)
6.下列哪些选项是多项式81i^2-16j^2的因式分解结果?
A.(9i+4j)(9i-4j)
B.(81i+16j)(i-1)
C.(9i+4j)^2
D.(81i-16j)(i+1)
7.下列哪些选项是多项式36k^2-49l^2的因式分解结果?
A.(6k+7l)(6k-7l)
B.(36k+49l)(k-1)
C.(6k+7l)^2
D.(36k-49l)(k+1)
8.下列哪些选项是多项式64m^2-81n^2的因式分解结果?
A.(8m+9n)(8m-9n)
B.(64m+81n)(m-1)
C.(8m+9n)^2
D.(64m-81n)(m+1)
9.下列哪些选项是多项式121o^2-25p^2的因式分解结果?
A.(11o+5p)(11o-5p)
B.(121o+25p)(o-1)
C.(11o+5p)^2
D.(121o-25p)(o+1)
10.下列哪些选项是多项式169q^2-36r^2的因式分解结果?
A.(13q+6r)(13q-6r)
B.(169q+36r)(q-1)
C.(13q+6r)^2
D.(169q-36r)(q+1)
四、判断题(每题2分,总共10题)
1.多项式x^2-4x+4可以因式分解为(x-2)^2。
2.多项式a^2+4不是因式分解的结果。
3.多项式b^2-9可以分解为(b+3)(b-3)。
4.多项式c^2-25可以分解为(c+5)(c-5)。
5.多项式d^2+16不可以因式分解。
6.多项式e^2-49可以分解为(e+7)(e-7)。
7.多项式f^2-36不可以因式分解。
8.多项式g^2-81可以分解为(g+9)(g-9)。
9.多项式h^2+25不可以因式分解。
10.多项式i^2-100可以分解为(i+10)(i-10)。
五、问答题(每题2分,总共10题)
1.请写出多项式x^2-9的因式分解结果。
2.请写出多项式4y^2-1的因式分解结果。
3.请写出多项式9z^2-16的因式分解结果。
4.请写出多项式16a^2-25的因式分解结果。
5.请写出多项式25b^2-49的因式分解结果。
6.请写出多项式49c^2-81的因式分解结果。
7.请写出多项式9d^2-4e^2的因式分解结果。
8.请写出多项式16f^2-25g^2的因式分解结果。
9.请写出多项式25h^2-36i^2的因式分解结果。
10.请写出多项式49j^2-64k^2的因式分解结果。
试卷答案
一、选择题答案及解析
1.A.(x+2)(x-2)
解析:x^2-4是平方差公式a^2-b^2的形式,其中a=x,b=2。根据平方差公式,可以分解为(x+b)(x-b),即(x+2)(x-2)。
2.A.(3a+4)(3a-4)
解析:9a^2-16是平方差公式a^2-b^2的形式,其中a=3a,b=4。根据平方差公式,可以分解为(3a+4)(3a-4)。
3.A.(2x+3y)(2x-3y)
解析:4x^2-9y^2是平方差公式a^2-b^2的形式,其中a=2x,b=3y。根据平方差公式,可以分解为(2x+3y)(2x-3y)。
4.A.(a+5)(a-5)
解析:a^2-25是平方差公式a^2-b^2的形式,其中a=a,b=5。根据平方差公式,可以分解为(a+5)(a-5)。
5.A.(4m+3n)(4m-3n)
解析:16m^2-9n^2是平方差公式a^2-b^2的形式,其中a=4m,b=3n。根据平方差公式,可以分解为(4m+3n)(4m-3n)。
6.A.(5p+2q)(5p-2q)
解析:25p^2-4q^2是平方差公式a^2-b^2的形式,其中a=5p,b=2q。根据平方差公式,可以分解为(5p+2q)(5p-2q)。
7.A.(7r+6s)(7r-6s)
解析:49r^2-36s^2是平方差公式a^2-b^2的形式,其中a=7r,b=6s。根据平方差公式,可以分解为(7r+6s)(7r-6s)。
8.A.(3t+4u)(3t-4u)
解析:9t^2-16u^2是平方差公式a^2-b^2的形式,其中a=3t,b=4u。根据平方差公式,可以分解为(3t+4u)(3t-4u)。
9.A.(8v+5w)(8v-5w)
解析:64v^2-25w^2是平方差公式a^2-b^2的形式,其中a=8v,b=5w。根据平方差公式,可以分解为(8v+5w)(8v-5w)。
10.A.(11x+7y)(11x-7y)
解析:121x^2-49y^2是平方差公式a^2-b^2的形式,其中a=11x,b=7y。根据平方差公式,可以分解为(11x+7y)(11x-7y)。
二、填空题答案及解析
1.(x+3)(x-3)
解析:x^2-9是平方差公式a^2-b^2的形式,其中a=x,b=3。根据平方差公式,可以分解为(x+3)(x-3)。
2.(2y+1)(2y-1)
解析:4y^2-1是平方差公式a^2-b^2的形式,其中a=2y,b=1。根据平方差公式,可以分解为(2y+1)(2y-1)。
3.(3z+4)(3z-4)
解析:9z^2-16是平方差公式a^2-b^2的形式,其中a=3z,b=4。根据平方差公式,可以分解为(3z+4)(3z-4)。
4.(4a+5)(4a-5)
解析:16a^2-25是平方差公式a^2-b^2的形式,其中a=4a,b=5。根据平方差公式,可以分解为(4a+5)(4a-5)。
5.(5b+7)(5b-7)
解析:25b^2-49是平方差公式a^2-b^2的形式,其中a=5b,b=7。根据平方差公式,可以分解为(5b+7)(5b-7)。
6.(7c+9)(7c-9)
解析:49c^2-81是平方差公式a^2-b^2的形式,其中a=7c,b=9。根据平方差公式,可以分解为(7c+9)(7c-9)。
7.(3d+2e)(3d-2e)
解析:9d^2-4e^2是平方差公式a^2-b^2的形式,其中a=3d,b=2e。根据平方差公式,可以分解为(3d+2e)(3d-2e)。
8.(4f+5g)(4f-5g)
解析:16f^2-25g^2是平方差公式a^2-b^2的形式,其中a=4f,b=5g。根据平方差公式,可以分解为(4f+5g)(4f-5g)。
9.(5h+6i)(5h-6i)
解析:25h^2-36i^2是平方差公式a^2-b^2的形式,其中a=5h,b=6i。根据平方差公式,可以分解为(5h+6i)(5h-6i)。
10.(7j+8k)(7j-8k)
解析:49j^2-64k^2是平方差公式a^2-b^2的形式,其中a=7j,b=8k。根据平方差公式,可以分解为(7j+8k)(7j-8k)。
三、多选题答案及解析
1.A.(x+4)(x-4)
解析:x^2-16是平方差公式a^2-b^2的形式,其中a=x,b=4。根据平方差公式,可以分解为(x+4)(x-4)。
D.(x+4)^2
解析:x^2-16不是完全平方公式,不能分解为(x+4)^2。
2.A.(3a+2b)(3a-2b)
解析:9a^2-4b^2是平方差公式a^2-b^2的形式,其中a=3a,b=2b。根据平方差公式,可以分解为(3a+2b)(3a-2b)。
C.(3a+2b)^2
解析:9a^2-4b^2不是完全平方公式,不能分解为(3a+2b)^2。
3.A.(4c+5d)(4c-5d)
解析:16c^2-25d^2是平方差公式a^2-b^2的形式,其中a=4c,b=5d。根据平方差公式,可以分解为(4c+5d)(4c-5d)。
D.(16c-25d)(c+1)
解析:16c^2-25d^2不是这种形式,不能分解为(16c-25d)(c+1)。
4.A.(7e+6f)(7e-6f)
解析:49e^2-36f^2是平方差公式a^2-b^2的形式,其中a=7e,b=6f。根据平方差公式,可以分解为(7e+6f)(7e-6f)。
C.(7e+6f)^2
解析:49e^2-36f^2不是完全平方公式,不能分解为(7e+6f)^2。
5.A.(5g+8h)(5g-8h)
解析:25g^2-64h^2是平方差公式a^2-b^2的形式,其中a=5g,b=8h。根据平方差公式,可以分解为(5g+8h)(5g-8h)。
D.(25g-64h)(g+1)
解析:25g^2-64h^2不是这种形式,不能分解为(25g-64h)(g+1)。
6.A.(9i+4j)(9i-4j)
解析:81i^2-16j^2是平方差公式a^2-b^2的形式,其中a=9i,b=4j。根据平方差公式,可以分解为(9i+4j)(9i-4j)。
C.(9i+4j)^2
解析:81i^2-16j^2不是完全平方公式,不能分解为(9i+4j)^2。
7.A.(6k+7l)(6k-7l)
解析:36k^2-49l^2是平方差公式a^2-b^2的形式,其中a=6k,b=7l。根据平方差公式,可以分解为(6k+7l)(6k-7l)。
D.(36k-49l)(k+1)
解析:36k^2-49l^2不是这种形式,不能分解为(36k-49l)(k+1)。
8.A.(8m+9n)(8m-9n)
解析:64m^2-81n^2是平方差公式a^2-b^2的形式,其中a=8m,b=9n。根据平方差公式,可以分解为(8m+9n)(8m-9n)。
C.(8m+9n)^2
解析:64m^2-81n^2不是完全平方公式,不能分解为(8m+9n)^2。
9.A.(11o+5p)(11o-5p)
解析:121o^2-25p^2是平方差公式a^2-b^2的形式,其中a=11o,b=5p。根据平方差公式,可以分解为(11o+5p)(11o-5p)。
D.(121o-25p)(o+1)
解析:121o^2-25p^2不是这种形式,不能分解为(121o-25p)(o+1)。
10.A.(13q+6r)(13q-6r)
解析:169q^2-36r^2是平方差公式a^2-b^2的形式,其中a=13q,b=6r。根据平方差公式,可以分解为(13q+6r)(13q-6r)。
D.(169q-36r)(q+1)
解析:169q^2-36r^2不是这种形式,不能分解为(169q-36r)(q+1)。
四、判断题答案及解析
1.正确
解析:x^2-4x+4是完全平方公式a^2-2ab+b^2的形式,其中a=x,b=2。根据完全平方公式,可以分解为(x-2)^2。
2.正确
解析:a^2+4不是平方差公式a^2-b^2的形式,因为缺少减号,无法因式分解。
3.正确
解析:b^2-9是平方差公式a^2-b^2的形式,其中a=b,b=3。根据平方差公式,可以分解为(b+3)(b-3)。
4.正确
解析:c^2-25是平方差公式a^2-b^2的形式,其中a=c,b=5。根据平方差公式,可以分解为(c+5)(c-5)。
5.正确
解析:d^2+16不是平方差公式a^2-b^2的形式,因为缺少减号,无法因式分解。
6.正确
解析:e^2-49是平方差公式a^2-b^2的形式,其中a=e,b=7。根据平方差公式,可以分解为(e+7)(e-7)。
7.错误
解析:f^2-36是平方差公式a^2-b^2的形式,其中a=f,b=6。根据平方差公式,可以分解为(f+6)(f-6)。
8.正确
解析:g^2-81是平方差公式a^2-b^2的形式,其中a=g,b=9。根据平方差公式,可以分解为(g+9)(g-9)。
9.正确
解析:h^2+25不是平方差公式a^2-b^2的形式,因为缺少减号,无法因式分解。
10.正确
解析:i^2-100是平方差公式a^2-b^2的形式,其中a=i,b=10。根据平方差公式,可以分解为(i+10)(i-10)。
五、问答题答案及解析
1.(x+3)(x-3)
解析:x^2-9是平方差公式a^2-b^2的形式,其中a=x,b=3。根据平方差公式,可以分解为(x+3)(x-3)。
2.(2y+1)(2y-1)
解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 47060-2026特种信封国际邮政公事信封
- 公关媒介面试题目及答案
- 眼镜店薪酬制度
- 招商类的面试题目及答案
- 养老院老人生活照顾人员表彰制度
- 森林生态学考研题目及答案
- 3年级拓展算法题目及答案
- 养老院工作人员培训考核评价制度
- 养老院服务质量监督评价制度
- 酒店餐饮部奖罚制度
- 用电安全隐患检测的新技术及应用
- 新疆克州阿合奇县2024-2025学年七年级上学期期末质量检测英语试卷(含答案及听力原文无音频)
- 《水库泥沙淤积及影响评估技术规范》
- 2023-2024学年浙江省杭州市西湖区教科版五年级上册期末考试科学试卷
- GB/T 7948-2024滑动轴承塑料轴套极限PV试验方法
- DL∕T 1057-2023 自动跟踪补偿消弧线圈成套装置技术条件
- AQ 2003-2018 轧钢安全规程(正式版)
- 儿童特发性矮身材诊断与治疗中国专家共识(2023版)解读
- 村委会指定监护人证明书模板
- 送给业主礼物方案
- JJG 393-2018便携式X、γ辐射周围剂量当量(率)仪和监测仪
评论
0/150
提交评论