版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届海南省临高县波莲中学高一数学第二学期期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,为边上的一点,且,若为的角平分线,则的取值范围为()A. B.C. D.2.为了得到函数的图象,可以将函数的图象()A.向左平移 B.向右平移C.向左平移 D.向右平移3.已知是定义在上的偶函数,且在上递增,那么一定有()A. B.C. D.4.设函数,其中为已知实常数,,则下列命题中错误的是()A.若,则对任意实数恒成立;B.若,则函数为奇函数;C.若,则函数为偶函数;D.当时,若,则().5.已知,取值如下表:014561.3m3m5.67.4画散点图分析可知:与线性相关,且求得回归方程为,则m的值(精确到0.1)为()A.1.5 B.1.6 C.1.7 D.1.86.在中,,是边上的一点,,若为锐角,的面积为20,则()A. B. C. D.7.已知,,且,则向量在向量上的投影等于()A.-4 B.4 C. D.8.下列四个函数中,与函数完全相同的是()A. B.C. D.9.已知,则的值构成的集合为()A. B. C. D.10.在等差数列中,已知,数列的前5项的和为,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在ΔABC中,a比c长4,b比c长2,且最大角的余弦值是-12,则12.若数列满足,,则的最小值为__________________.13.在空间直角坐标系中,点关于原点的对称点的坐标为__________.14.按照如图所示的程序框图,若输入的x值依次为,0,1,运行后,输出的y值依次为,,,则________.15.函数的定义域为A,若时总有为单函数.例如,函数=2x+1()是单函数.下列命题:①函数=(xR)是单函数;②若为单函数,且则;③若f:AB为单函数,则对于任意bB,它至多有一个原象;④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.其中的真命题是.(写出所有真命题的编号)16.如图,圆锥形容器的高为圆锥内水面的高为,且,若将圆锥形容器倒置,水面高为,则等于__________.(用含有的代数式表示)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知、、是的内角,且,.(1)若,求的外接圆的面积:(2)若,且为钝角三角形,求正实数的取值范围.18.一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.19.设公差不为0的等差数列中,,且构成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若数列的前项和满足:,求数列的前项和.20.如图,在四棱锥中,底面为平行四边形,点为中点,且.(1)证明:平面;(2)证明:平面平面.21.已知三角形的三个顶点.(1)求BC边所在直线的方程;(2)求BC边上的高所在直线方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
先根据正弦定理用角A,C表示,再根据三角形内角关系化基本三角函数形状,最后根据正弦函数性质得结果.【详解】因为,为的角平分线,所以,在中,,因为,所以,在中,,因为,所以,所以,则,因为,所以,所以,则,即的取值范围为.选A.【点睛】本题考查函数正弦定理、辅助角公式以及正弦函数性质,考查基本分析求解能力,属中档题.2、B【解析】
利用的图象变换规律,即可求解,得出结论.【详解】由题意,函数,,又由,故把函数的图象上所有的点,向右平移个单位长度,可得的图象,故选:B.【点睛】本题主要考查了三角函数的图象变换规律,其中解答中熟记三角函数的图象变换是解答的关键,着重考查了推理与运算能力,属于基础题.3、D【解析】
根据题意,结合,可知,再利用偶函数的性质即可得出结论.【详解】是定义在上的偶函数,,在上递增,,即,故选:D.【点睛】本题考查函数奇偶性与单调性的简单应用,判断出是解题关键.4、D【解析】
利用两角和的余弦公式化简表达式.对于A选项,将化简得到的表达式代入上述表达式,可判断出A选项为真命题.对于B选项,将化简得到的表达式代入上述表达式,可判断出为奇函数,由此判断出B选项为真命题.对于C选项,将化简得到的表达式代入上述表达式,可判断出为偶函数,由此判断出C选项为真命题.对于D选项,根据、,求得的零点的表达式,由此求得(),进而判断出D选项为假命题.【详解】.不妨设.为已知实常数.若,则得;若,则得.于是当时,对任意实数恒成立,即命题A是真命题;当时,,它为奇函数,即命题B是真命题;当时,,它为偶函数,即命题C是真命题;当时,令,则,上述方程中,若,则,这与矛盾,所以.将该方程的两边同除以得,令(),则,解得().不妨取,(且),则,即(),所以命题D是假命题.故选:D【点睛】本小题主要考查两角和的余弦公式,考查三角函数的奇偶性,考查三角函数零点有关问题的求解,考查同角三角函数的基本关系式,属于中档题.5、C【解析】
根据表格中的数据,求得样本中心为,代入回归直线方程,即可求解.【详解】由题意,根据表格中的数据,可得,,即样本中心为,代入回归直线方程,即,解得,故选C.【点睛】本题主要考查了回归直线方程的应用,其中解答中熟记回归直线方程的基本特征是解答的关键,着重考查了推理与运算能力,属于基础题.6、C【解析】
先利用面积公式计算出,计算出,运用余弦定理计算出,利用正弦定理计算出,在中运用正弦定理求解出.【详解】解:由的面积公式可知,,可得,为锐角,可得在中,,即有,由可得,由可知.故选.【点睛】本题考查正弦定理与余弦定理在解三角形中的应用,考查方程思想,属于中档题.7、A【解析】
根据公式,向量在向量上的投影等于,计算求得结果.【详解】向量在向量上的投影等于.故选A.【点睛】本题考查了向量的投影公式,只需记住公式代入即可,属于基础题型.8、C【解析】
先判断函数的定义域是否相同,再通过化简判断对应关系是否相同,从而判断出与相同的函数.【详解】的定义域为,A.,因为,所以,定义域为或,与定义域不相同;B.,因为,所以,所以定义域为,与定义域不相同;C.,因为,所以定义域为,又因为,所以与相同;D.,因为,所以,定义域为,与定义域不相同.故选:C.【点睛】本题考查与三角函数有关的相同函数的判断,难度一般.判断相同函数时,首先判断定义域是否相同,定义域相同时再去判断对应关系是否相同(函数化简),结合定义域与对应关系即可判断出是否是相同函数.9、B【解析】
根据的奇偶分类讨论.【详解】为偶数时,,为奇数时,设,则.∴的值构成的集合是.故选:B.【点睛】本题考查诱导公式,掌握诱导公式是解题基础.注意诱导公式的十字口诀:奇变偶不变,符号看象限.10、C【解析】
由,可求出,结合,可求出及.【详解】设数列的前项和为,公差为,因为,所以,则,故.故选C.【点睛】本题考查了等差数列的前项和,考查了等差数列的通项公式,考查了计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、15【解析】
由a比c长4,b比c长2,用c表示出a与b,可得出a为最大边,即A为最大角,可得出cosA的值,由A为三角形的内角,利用特殊角的三角函数值求出A的度数,同时利用余弦定理表示出cosA,将表示出的a与b代入,并根据最大角的余弦值,得到关于c的方程,求出方程的解得到c的值,然后由b,c及sinA的值,利用三角形的面积公式即可求出三角形ABC的面积.【详解】根据题意得:a=c+4,b=c+2,则a为最长边,∴A为最大角,又cosA=-12,且∴A=120cos整理得:c2-c-6=0,即(c−3)(解得:c=3或c=−2(舍去),∴a=3+4=7,b=3+2=5,则△ABC的面积S=12bcsinA=15故答案为:153【点睛】余弦定理一定要熟记两种形式:(1)a2=b2+12、【解析】
由题又,故考虑用累加法求通项公式,再分析的最小值.【详解】,故,当且仅当时成立.又为正整数,且,故考查当时.当时,当时,因为,故当时,取最小值为.故答案为:.【点睛】本题主要考查累加法,求最小值时先用基本不等式,发现不满足“三相等”,故考虑与相等时的取值最近的两个正整数.13、【解析】
空间直角坐标系中,关于原点对称,每个坐标变为原来的相反数.【详解】空间直角坐标系中,关于原点对称,每个坐标变为原来的相反数.点关于原点的对称点的坐标为故答案为:【点睛】本题考查了空间直角坐标系关于原点对称,属于简单题.14、5【解析】
根据程序框图依次计算出、、后即可得解.【详解】由程序框图可知,;,;,.所以.故答案为:.【点睛】本题考查了程序框图的应用,属于基础题.15、②③【解析】
命题①:对于函数,设,故和可能相等,也可能互为相反数,即命题①错误;命题②:假设,因为函为单函数,所以,与已知矛盾,故,即命题②正确;命题③:若为单函数,则对于任意,,假设不只有一个原象与其对应,设为,则,根据单函数定义,,又因为原象中元素不重复,故函数至多有一个原象,即命题③正确;命题④:函数在某区间上具有单调性,并不意味着在整个定义域上具有单调性,即命题④错误,综上可知,真命题为②③.故答案为②③.16、【解析】
根据水的体积不变,列出方程,解出的值,即可得到答案.【详解】设圆锥形容器的底面面积为,则未倒置前液面的面积为,所以水的体积为,设倒置后液面面积为,则,所以,所以水的体积为,所以,解得.【点睛】本题主要考查了圆锥的结构特征,以及圆锥的体积的计算与应用,其中解答中熟练应用圆锥的结构特征,利用体积公式准确运算是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于中档试题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)根据同角三角函数基本关系先求得,再由正弦定理求得即可;(2)因大小不能确定,故钝角不能确定,结合三角形三边关系和余弦定理特点即可判断【详解】(1)由,又,即,故外接圆的面积为:(2),,,根据三边关系有,当为钝角时,可得,即,解得,故;当为钝角时,可得,即,解得,故;综上可得的范围是【点睛】本题考查正弦定理的应用,余弦定理和三角形中形状的判断的关系,属于中档题18、(1)取出球为红球或黑球的概率为(2)取出球为红球或黑球或白球的概率为【解析】试题分析:(1)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球,满足条件的事件是取出的球是红球或黑球,根据古典概型和互斥事件的概率公式得到结果;(2)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球,满足条件的事件是取出的一球是红球或黑球或白球,根据古典概型公式得到结果试题解析:(1)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球共有12种结果;满足条件的事件是取出的球是红球或黑球共有9种结果,∴概率为.(2)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球共有12种结果;满足条件的事件是取出的一球是红球或黑球或白球共有11种结果,∴概率为.即取出的1球是红球或黑球的概率为;取出的1球是红球或黑球或白球的概率为.考点:等可能事件的概率19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根据条件列方程解得公差,再根据等差数列通项公式得结果,(Ⅱ)先根据和项求通项,再根据错位相减法求和.【详解】(Ⅰ)因为构成等比数列,所以(0舍去)所以(Ⅱ)当时,当时,,相减得所以即【点睛】本题考查等差数列通项公式以及错位相减法求和,考查基本分析求解能力,属中档题.20、(1)证明见解析;(2)证明见解析【解析】
(1)连接交于点,连接,可证,从而可证平面.(2)可证平面,从而得到平面平面.【详解】(1)连接交于点,连接,因为底面为平行四边形,所以为中点.在中,又为中点,所以.又平面,平面,所以平面.(2)因为底面为平行四边形,所以.又即,所以.又即.又平面,平面,,所以平面.又平面,所以平面平面.【点睛】线面平行的证明的关键是在面中找到一条与已知直线平行的直线,找线的方法是平行投影或中心投影,我们也可以通过面面平行证线面平行,这个方法的关键是构造过已知直线的平面,证明该平面与已知平面平行.线面垂直的判定可由线线垂直得到,注意线线是相交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年长沙市一中招生面试题库及答案
- 2025年百度外包测试面试题库及答案
- 2025年四川商学院面试题库及答案
- 2025年中国青年团入团面试题库及答案
- 2025年国企招聘不同岗位的笔试及答案
- 2025年怀宁县人民医院面试题库及答案
- 2025年高二转学国际班面试题库及答案
- 2025年日照科技职业学院马克思主义基本原理概论期末考试模拟题及答案解析(必刷)
- 2025年灵川县幼儿园教师招教考试备考题库含答案解析(夺冠)
- 2025年黑龙江农垦职业学院马克思主义基本原理概论期末考试模拟题带答案解析
- 2026春节后复工复产安全培训第一课
- 2026年山东药品食品职业学院单招综合素质考试备考试题含详细答案解析
- GB/T 46878-2025二氧化碳捕集、运输和地质封存地质封存
- 2026年1月浙江省高考(首考)历史试题(含答案)
- 借款合同2026年担保协议
- 征兵体检培训课件
- 2024年河北省中考化学真题及答案解析
- 2025年职业卫生试题试题及答案
- 消毒供应室职业暴露防范
- 2025年内蒙古行政执法考试试题及答案
- GB/T 46416-2025乘用车对开路面直线制动车辆稳定性试验方法
评论
0/150
提交评论