版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省玉山县樟村中学2026届高一数学第二学期期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的弧度数是()A. B. C. D.2.已知、的取值如下表所示:如果与呈线性相关,且线性回归方程为,则()A. B. C. D.3.已知,为直线,,为平面,下列命题正确的是()A.若,,则B.若,,则与为异面直线C.若,,,则D.若,,,则4.为了得到函数的图象,只需把函数的图象上所有的点A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度5.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18km,速度为1000km/h,飞行员先看到山顶的俯角为30°,经过1min后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1km)()A.11.4 B.6.6C.6.5 D.5.66.不等式的解集为,则实数的值为()A. B.C. D.7.若,且,则()A. B. C. D.8.直线x-2y+2=0关于直线x=1对称的直线方程是()A.x+2y-4=0 B.2x+y-1=0 C.2x+y-3=0 D.2x+y-4=09.一空间几何体的三视图如下图所示,则该几何体的体积为()A.1 B.3 C.6 D.210.已知则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.382与1337的最大公约数是__________.12.函数的最小值是.13.设Sn为数列{an}的前n项和,若Sn=(-1)nan-,n∈N,则a3=________.14.对于任意x>0,不等式3x2-2mx+12>015.圆的一条经过点的切线方程为______.16.如图甲是第七届国际数学教育大会(简称)的会徽图案,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中,如果把图乙中的直角三角形继续作下去,记的长度构成数列,则此数列的通项公式为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其图象与轴相邻的两个交点的距离为.(1)求函数的解析式;(2)若将的图象向左平移个长度单位得到函数的图象恰好经过点,求当取得最小值时,在上的单调区间.18.已知以点为圆心的圆C被直线截得的弦长为.(1)求圆C的标准方程:(2)求过与圆C相切的直线方程:(3)若Q是直线上的动点,QR,QS分别切圆C于R,S两点.试问:直线RS是否恒过定点?若是,求出恒过点坐标:若不是,说明理由.19.已知数列是等差数列,,.(1)从第几项开始;(2)求数列前n项和的最大值.20.已知函数f(x)=x2+(x-1)|x-a|.(1)若a=-1,解方程f(x)=1;(2)若函数f(x)在R上单调递增,求实数a的取值范围;(3)是否存在实数a,使不等式f(x)≥2x-3对任意x∈R恒成立?若存在,求出a的取值范围;若不存在,请说明理由.21.已知方程;(1)若,求的值;(2)若方程有实数解,求实数的取值范围;(3)若方程在区间上有两个相异的解、,求的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由角度与弧度的关系转化.【详解】-150.故选:B.【点睛】本题考查角度与弧度的互化,解题关键是掌握关系式:.2、A【解析】
计算出、,再将点的坐标代入回归直线方程,可求出的值.【详解】由表格中的数据可得,,由于回归直线过样本的中心点,则有,解得,故选:A.【点睛】本题考查回归直线方程中参数的计算,解题时要充分利用回归直线过样本的中心点这一结论,考查计算能力,属于基础题.3、D【解析】
利用空间中线线、线面、面面间的位置关系对选项逐一判断即可.【详解】由,为直线,,为平面,知:在A中,若,,则与相交、平行或异面,故A错误;在B中,若,,则与相交、平行或异面,故B错误;在C中,若,,,则与相交、平行或异面,故C错误;在D中,若,,,则由线面垂直、面面平行的性质定理得,故D正确.故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,属于基础题.4、D【解析】试题分析:由题意,为得到函数的图象,只需把函数的图象上所有的点向右平行移动个单位长度,故选D.【考点】三角函数图象的平移【名师点睛】本题考查三角函数图象的平移,在函数的图象平移变换中要注意“”的影响,变换有两种顺序:一种的图象向左平移个单位得的图象,再把横坐标变为原来的倍,纵坐标不变,得的图象,另一种是把的图象横坐标变为原来的倍,纵坐标不变,得的图象,再向左平移个单位得的图象.5、B【解析】AB=1000×(km),∴BC=·sin30°=(km).∴航线离山顶h=×sin75°≈11.4(km).∴山高为18-11.4=6.6(km).选B.6、C【解析】
不等式的解集为,为方程的两根,则根据根与系数关系可得,.故选C.考点:一元二次不等式;根与系数关系.7、A【解析】
利用二倍角的正弦公式和与余弦公式化简可得.【详解】∵,∴,∵,所以,∴,∴.故选:A【点睛】本题考查了二倍角的正弦公式,考查了二倍角的余弦公式,属于基础题.8、A【解析】
所求直线的斜率与直线x-2y+2=0的斜率互为相反数,且在x=1处有公共点,求解即可。【详解】直线x-2y+2=0与直线x=1的交点为P1,3因为直线x-2y+2=0的斜率为12,所以所求直线的斜率为-故所求直线方程为y-32=-故答案为A.【点睛】本题考查了直线的斜率,直线的方程,直线关于直线的对称问题,属于基础题。9、D【解析】
几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是1,下底是2,垂直于底边的腰是2,一条侧棱与底面垂直,这条侧棱长是2.【详解】由三视图可知,几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是1,下底是2,垂直于底边的腰是2,一条侧棱与底面垂直,这条侧棱长是2.四棱锥的体积是.故选D.【点睛】本题考查由三视图求几何体的体积,由三视图求几何体的体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.10、B【解析】
直接利用两角和的正切函数化简求解即可.【详解】tan(α+β),tan(β),则tan(α)=tan((α+β)﹣(β)).故选B.【点睛】本题考查两角和与差的三角函数公式的应用,考查计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、191【解析】
利用辗转相除法,求382与1337的最大公约数.【详解】因为,,所以382与1337的最大公约数为191,故填:.【点睛】本题考查利用辗转相除法求两个正整数的最大公因数,属于容易题.12、3【解析】试题分析:考点:基本不等式.13、-【解析】当n=3时,S3=a1+a2+a3=-a3-,则a1+a2+2a3=-,当n=4时,S4=a1+a2+a3+a4=a4-,两式相减得a3=-.14、(-∞,6)【解析】
先参变分离转化为对应函数最值问题,再通过求函数最值得结果.【详解】因为3x2-2mx+12>0,所以m<3x2+【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.15、【解析】
根据题意,设为,设过点圆的切线为,分析可得在圆上,求出直线的斜率,分析可得直线的斜率,由直线的点斜式方程计算可得答案.【详解】根据题意,设为,设过点圆的切线为,圆的方程为,则点在圆上,则,则直线的斜率,则直线的方程为,变形可得,故答案为.【点睛】本题考查圆的切线方程,注意分析点与圆的位置关系.16、【解析】
由图可知,由勾股定理可得,利用等差数列的通项公式求解即可.【详解】根据图形,因为都是直角三角形,,是以1为首项,以1为公差的等差数列,,,故答案为.【点睛】本题主要考查归纳推理的应用,等差数列的定义与通项公式,以及数形结合思想的应用,意在考查综合应用所学知识解答问题的能力,属于与中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)单调增区间为,;单调减区间为.【解析】
(1)利用两角差的正弦公式,降幂公式以及辅助角公式化简函数解析式,根据其图象与轴相邻的两个交点的距离为,得出周期,利用周期公式得出,即可得出该函数的解析式;(2)根据平移变换得出,再由函数的图象经过点,结合正弦函数的性质得出的最小值,进而得出,利用整体法结合正弦函数的单调性得出该函数在上的单调区间.【详解】解:(1)由已知函数的周期,,∴.(2)将的图象向左平移个长度单位得到的图象∴,∵函数的图象经过点∴,即∴,∴,∵,∴当,取最小值,此时最小值为此时,.令,则当或,即当或时,函数单调递增当,即时,函数单调递减.∴在上的单调增区间为,;单调减区间为.【点睛】本题主要考查了由正弦函数的性质确定解析式以及正弦型函数的单调性,属于中档题.18、(1)(2)或(3)直线RS恒过定点【解析】
(1)由弦长可得,进而求解即可;(2)分别讨论直线的斜率存在与不存在的情况,再利用圆心到直线距离等于半径求解即可;(3)由QR,QS分别切圆C于R,S两点,可知,在以为直径的圆上,设为,则可得到以为直径的圆的方程,与圆联立可得,由求解即可【详解】(1)由题,设点到直线的距离为,则,则弦长,解得,所以圆的标准方程为:(2)当切线斜率不存在时,直线方程为,圆心到直线距离为2,故此时相切;当切线斜率存在时,设切线方程为,即,则,解得,则直线方程为,即,综上,切线方程为或(3)直线RS恒过定点,由题,,则,在以为直径的圆上,设为,则以为直径的圆的方程为:,整理可得,与圆:联立可得:,即,令,解得,故无论取何值时,直线恒过定点【点睛】本题考查圆的方程,考查已知圆外一点求切线方程,考查直线恒过定点问题19、(1)从第27项开始(2)【解析】
(1)写出通项公式解不等式即可;(2)由(1)得数列最后一个负项为取得最大值处即可求解【详解】(1).解得.所以从第27项开始.(2)由上可知当时,最大,最大为.【点睛】本题考查等差数列的通项公式及前n项和的最值,考查推理能力,是基础题20、(1){x|x≤-1或x=1};(2);(3).【解析】试题分析:(1)把代入函数解析式,分段后分段求解方程的解集,取并集后得答案;(2)分段写出函数的解析式,由在上单调递增,则需第一段二次函数的对称轴小于等于,第二段一次函数的一次项系数大于0,且第二段函数的最大值小于等于第一段函数的最小值,联立不等式组后求解的取值范围;(3)把不等式对一切实数恒成立转化为函数对一切实数恒成立,然后对进行分类讨论,利用函数单调性求得的范围,取并集后得答案.试题解析:(1)当时,,则;当时,由,得,解得或;当时,恒成立,∴方程的解集为或.(2)由题意知,若在R上单调递增,则解得,∴实数的取值范围为.(3)设,则,不等式对任意恒成立,等价于不等式对任意恒成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年河北农业大学马克思主义基本原理概论期末考试模拟题带答案解析(必刷)
- 2025年莒县招教考试备考题库附答案解析(夺冠)
- 2025年黔东南理工职业学院马克思主义基本原理概论期末考试模拟题及答案解析(必刷)
- 2025年山西传媒学院马克思主义基本原理概论期末考试模拟题含答案解析(必刷)
- 2025年天津天狮学院马克思主义基本原理概论期末考试模拟题含答案解析(夺冠)
- 2025年金肯职业技术学院马克思主义基本原理概论期末考试模拟题带答案解析(必刷)
- 2025年唐县招教考试备考题库带答案解析(必刷)
- 2025年漾濞县幼儿园教师招教考试备考题库含答案解析(夺冠)
- 2025年九江职业技术学院单招职业倾向性考试题库附答案解析
- 2025年四川邮电职业技术学院单招职业倾向性测试题库附答案解析
- 2025年人教版(2024)小学信息科技四年级(全一册)教学设计(附教材目录 P208)
- 《铁路路基施工与维护》高职高速铁路施工与维护全套教学课件
- 2025年苏州市中考物理试卷真题(含答案解析)
- 20G361预制混凝土方桩
- T/CGCC 93-2024文化产品产权价值评估通则
- 临床用药解读-消化系统常见疾病的诊疗进展及处方审核要点
- 高中数学北师大版讲义(必修二)第05讲1.5正弦函数、余弦函数的图象与性质再认识3种常见考法归类(学生版+解析)
- 2025年物料提升机司机(建筑特殊工种)模拟考试100题及答案
- 海关特殊监管区域专题政策法规汇编 2025
- 《胆囊结石伴胆囊炎》课件
- 《浙江省城市体检工作技术导则(试行)》
评论
0/150
提交评论