2026届云南省宾川县高一下数学期末达标检测试题含解析_第1页
2026届云南省宾川县高一下数学期末达标检测试题含解析_第2页
2026届云南省宾川县高一下数学期末达标检测试题含解析_第3页
2026届云南省宾川县高一下数学期末达标检测试题含解析_第4页
2026届云南省宾川县高一下数学期末达标检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届云南省宾川县高一下数学期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点,点,点在圆上,则使得为直角三角形的点的个数为()A. B. C. D.2.一个盒子内装有大小相同的红球、白球和黑球若干个,从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或红球的概率是()A.0.3 B.0.55 C.0.7 D.0.753.过点作抛物线的两条切线,切点为,则的面积为()A. B. C. D.4.已知为的三个内角的对边,,的面积为2,则的最小值为().A. B. C. D.5.“是第二象限角”是“是钝角”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既不充分也不必要6.阅读如图的程序框图,运行该程序,则输出的值为()A.3 B.1C.-1 D.07.如图是一圆锥的三视图,正视图和侧视图都是顶角为120°的等腰三角形,若过该圆锥顶点S的截面三角形面积的最大值为2,则该圆锥的侧面积为A. B. C. D.48.已知为等差数列的前项和,,,则()A.2019 B.1010 C.2018 D.10119.对于函数,在使成立的所有常数中,我们把的最大值称为函数的“下确界”.若函数,的“下确界”为,则的取值范围是()A. B. C. D.10.若实数,满足约束条件,则的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知a,b为常数,若,则______;12.已知3a=2,则32a=____,log318﹣a=_____13.在中,角所对的边分别为.若,,则角的大小为____________________.14.在中,角的对边分别为,若,则角________.15.已知数列满足且,则____________.16.已知数列是等差数列,记数列的前项和为,若,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,.(1)求函数的解析式及在区间上的值域;(2)求满足不等式的x的集合.18.设两个非零向量,不共线,如果,,.(1)求证:、、共线;(2)试确定实数,使和共线.19.已知函数的图象与轴正半轴的交点为,.(1)求数列的通项公式;(2)令(为正整数),问是否存在非零整数,使得对任意正整数,都有?若存在,求出的值,若不存在,请说明理由.20.已知直线(1)若直线过点,且.求直线的方程.(2)若直线过点A(2,0),且,求直线的方程及直线,,轴围成的三角形的面积.21.为了了解某省各景区在大众中的熟知度,随机从本省岁的人群中抽取了人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该省有哪几个国家级旅游景区?”,统计结果如下表所示:组号分组回答正确的人数回答正确的人数占本组的频率第组第组第组第组第组(1)分别求出的值;(2)从第组回答正确的人中用分层抽样的方法抽取人,求第组每组抽取的人数;(3)在(2)中抽取的人中随机抽取人,求所抽取的人中恰好没有年龄段在的概率

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

分、、是直角三种情况讨论,求出点的轨迹,将问题转化为点的轨迹图形与圆的公共点个数问题,即可得出正确选项.【详解】①若为直角,则,设点,,,则,即,此时,点的轨迹是以点为圆心,以为半径的圆,圆与圆的圆心距为,,则圆与圆的相交,两圆的公共点个数为;②若为直角,由于直线的斜率为,则直线的斜率为,直线的方程为,即,圆的圆心到直线的距离为,则直线与圆相交,直线与圆有个公共点;③若为直角,则直线的方程为,圆的圆心到直线的距离为,直线与圆相离,直线与圆没有公共点.综上所述,使得为直角三角形的点的个数为.故选:D.【点睛】本题考查符合条件的直角三角形的顶点个数,解题的关键在于将问题转化为直线与圆、圆与圆的公共点个数之和的问题,同时也考查了轨迹方程的求解,考查化归与转化思想以及分类讨论思想的应用,属于难题.2、D【解析】

由题意可知摸出黑球的概率,再根据摸出黑球,摸出红球为互斥事件,根据互斥事件的和即可求解.【详解】因为从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,所以摸出黑球的概率是,因为从盒子中摸出1个球为黑球或红球为互斥事件,所以摸出黑球或红球的概率,故选D.【点睛】本题主要考查了两个互斥事件的和事件,其概率公式,属于中档题.3、B【解析】设抛物线过点的切线方程为,即,将点代入可得,同理都满足方程,即为直线的方程为,与抛物线联立,可得,点到直线的距离,则的面积为,故选B.【方法点晴】本题主要考查利用导数求曲线切线方程以及弦长公式与点到直线距离公式,属于难题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.4、D【解析】

运用三角形面积公式和余弦定理,结合三角函数的辅助角公式和正弦型函数的值域最后可求出的最小值.【详解】因为,所以,即,令,可得,于是有,因此,即,所以的最小值为,故本题选D.【点睛】本题考查了余弦定理、三角形面积公式,考查了辅助角公式,考查了数学运算能力.5、B【解析】

由α是钝角可得α是第二象限角,反之不成立,则答案可求.【详解】若α是钝角,则α是第二象限角;反之,若α是第二象限角,α不一定是钝角,如α=﹣210°.∴“α是第二象限角”是“α是钝角”的必要非充分条件.故选B.【点睛】本题考查钝角、象限角的概念,考查了充分必要条件的判断方法,是基础题.6、D【解析】

从起始条件、开始执行程序框图,直到终止循环.【详解】,,,,,输出.【点睛】本题是直到型循环,只要满足判断框中的条件,就终止循环,考查读懂简单的程序框图.7、B【解析】

过该圆锥顶点S的截面三角形面积最大是直角三角形,根据面积为2求出圆锥的母线长,再根据正视图求圆锥底面圆的半径,最后根据扇形面积公式求圆锥的侧面积.【详解】过该圆锥顶点S的截面三角形面积最直角三角形,设圆锥的母线长和底面圆的半径分别为,则,即,又,所以圆锥的侧面积;故选B.【点睛】本题考查三视图及圆锥有关计算,此题主要难点在于判断何时截面三角形面积最大,要结合三角形的面积公式,当,即截面是等腰直角三角时面积最大.8、A【解析】

利用基本元的思想,将已知条件转化为和的形式,列方程组,解方程组求得,进而求得的值.【详解】由于数列是等差数列,故,解得,故.故选:A.【点睛】本小题主要考查等差数列通项公式和前项和公式的基本量计算,属于基础题.9、A【解析】

由下确界定义,,的最小值是,由余弦函数性质可得.【详解】由题意,的最小值是,又,由,得,,,时,,所以.故选:A.【点睛】本题考查新定义,由新定义明确本题中的下确界就是函数的最小值.可通过解不等式确定参数的范围.10、D【解析】画出表示的可行域,如图所示的开放区域,平移直线,由图可知,当直线经过时,直线在纵轴上的截距取得最大值,此时有最小值,无最大值,的取值范围是,故选A.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】

根据极限存在首先判断出的值,然后根据极限的值计算出的值,由此可计算出的值.【详解】因为,所以,又因为,所以,所以.故答案为:.【点睛】本题考查根据极限的值求解参数,难度较易.12、42.【解析】

由已知结合指数式的运算性质求解,把化为对数式得到,代入,再由对数的运算性质求解.【详解】∵,∴,由,得,∴.故答案为:,.【点睛】本题考查指数式与对数式的互化,考查对数的运算性质,属于基础题.13、【解析】本题考查了三角恒等变换、已知三角函数值求角以及正弦定理,考查了同学们解决三角形问题的能力.由得,所以由正弦定理得,所以A=或(舍去)、14、【解析】

根据得,利用余弦定理即可得解.【详解】由题:,,,由余弦定理可得:,.故答案为:【点睛】此题考查根据余弦定理求解三角形的内角,关键在于熟练掌握余弦定理公式,准确计算求解.15、【解析】

由题得为等差数列,得,则可求【详解】由题:为等差数列且首项为2,则,所以.故答案为:2550【点睛】本题考查等差数列的定义,准确计算是关键,是基础题16、1【解析】

由等差数列的求和公式和性质可得,代入已知式子可得.【详解】由等差数列的求和公式和性质可得:=,且,∴.故答案为:1.【点睛】本题考查了等差数列的求和公式及性质的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)值域为.(2)【解析】

(1)由向量,,利用数量积运算得到;由,得到,利用整体思想转化为正弦函数求值域.(2)不等式,转化为,利用整体思想,转化为三角不等式,利用单位圆或正弦函数的图象求解.【详解】(1)因为,,所以.因为,所以,所以,所以,所以在区间上的值域为.(2)由,得,即.所以,解得,不等式的解集为.【点睛】本题主要考查了向量与三角函数的综合应用,还考查了运算求解的能力,属于中档题.18、(1)证明见解析(2)【解析】

(1)要证、、共线,只要证明存在实数,使得成立即可.

(2)利用向量共线的充要条件和两个非零向量与不共线即可求出.【详解】(1)证明:由.又,则.所以.所以、、共线.(2)和共线,则存在实数,使得成立.向量,不共线,所以,解得:所以当时,使和共线.【点睛】本题考查利用向量共线的充要条件证明点共线和求参数的值.19、(1);(2)存在,.【解析】

(1)把点A带入即可(2)根据(1)的计算出、,再解不等式即可【详解】(1)设,得,.所以;(2),若存在,满足恒成立即:,恒成立当为奇数时,当为偶数时,所以,故:.【点睛】本题考查了数列通项的求法,以及不等式恒成立的问题,不等式恒成立是一个难点,也是高考中的常考点,本题属于较难的题。20、(1);(2);【解析】

(1)根据已知求得的斜率,由点斜式求出直线的方程.(2)根据已知求得的斜率,由点斜式写出直线的方程,联立的方程,求得两条直线交点的坐标,再由三角形面积公式求得三角形面积.【详解】解:(1)∵∥,∴直线的斜率是又直线过点,∴直线的方程为,即(2)∵,∴直线的斜率是又直线过点,∴直线的方程为即由得与的交点为∴直线,,轴围成的三角形的面积是【点睛】本小题主要考查两条直线平行、垂直时,斜率的对应关系,考查直线的点斜式方程,考查两条直线交点坐标的求法,考查三角形的面积公式,属于基础题.21、(1),,,;(2)分边抽取2,3,1人;(3).【解析】

(1)根据数据表和频率分布直方图可计算得到第组的人数和频率,从而可得总人数;根据总数、频率和频数的关系,可分别计算得到所求结果;(2)首先确定第组的总人数,根据分层抽样原则计算即可得到结果;(3)首先计算得到基本事件总数;再计算出恰好没有年龄段在包含的基本事件个数,根据古典概型概率公式可求得结果.【详解】(1)第组的人数为:人,第组的频率为:第一组的频率为第一组的人数为:第二组的频

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论