云南省玉溪市第一中学2026届数学高一下期末学业水平测试模拟试题含解析_第1页
云南省玉溪市第一中学2026届数学高一下期末学业水平测试模拟试题含解析_第2页
云南省玉溪市第一中学2026届数学高一下期末学业水平测试模拟试题含解析_第3页
云南省玉溪市第一中学2026届数学高一下期末学业水平测试模拟试题含解析_第4页
云南省玉溪市第一中学2026届数学高一下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省玉溪市第一中学2026届数学高一下期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在四边形ABCD中,=a+2b,=-4a-b,=-5a-3b,其中a,b不共线,则四边形ABCD为()A.平行四边形 B.矩形 C.梯形 D.菱形2.已知向量,则与的夹角为()A. B. C. D.3.在平行四边形ABCD中,若,则必有()A. B.或C.ABCD是矩形 D.ABCD是正方形4.已知,,那么等于()A. B. C. D.5.在直角中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在中随机地选取个点,其中有个点正好在扇形里面,则用随机模拟的方法得到的圆周率的近似值为()A. B. C. D.6.执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是()A.k>4? B.k>5? C.k>6? D.k>7?7.若,且,则的值是()A. B. C. D.8.当为第二象限角时,的值是().A. B. C. D.9.如图,飞机的航线和山顶在同一个铅垂平面内,已知飞机的高度为海拔20000m,速度为900km/h,飞行员先看到山顶的俯角为30∘,经过80s后又看到山顶的俯角为75A.5000(3+1)C.5000(3-3)10.已知,则向量与向量的夹角是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.等比数列中,若,,则______.12.从集合A={-1,1,2}中随机选取一个数记为k,从集合B={-2,1,2}中随机选取一个数记为b,则直线y=kx+b不经过第三象限的概率为_____.13.等比数列的首项为,公比为q,,则首项的取值范围是____________.14.数列的前项和为,已知,且对任意正整数,都有,若恒成立,则实数的最小值为________.15.若实数满足不等式组则的最小值是_____.16.若,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知各项均为正数的等比数列满足:,且,.(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前n项和.18.爱心超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温单位:有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份每天的最高气温数据,得到下面的频数分布表:最高气温天数216362574(1)求六月份这种酸奶一天的需求量不超过300瓶的频率;(2)当六月份有一天这种酸奶的进货量为450瓶时,求这一天销售这种酸奶的平均利润(单位:元)19.在中,角、、所对的边分别为、、,且满足.(1)求角;(2)若,,求的周长.20.某购物中心举行抽奖活动,顾客从装有编号分别为0,1,2,3四个球的抽奖箱中,每次取出1个球,记下编号后放回,连续取两次(假设取到任何一个小球的可能性相同).若取出的两个小球号码相加之和等于5,则中一等奖;若取出的两个小球号码相加之和等于4,则中二等奖;若取出的两个小球号码相加之和等于3,则中三等奖;其它情况不中奖.(Ⅰ)求顾客中三等奖的概率;(Ⅱ)求顾客未中奖的概率.21.在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.求证:(1)AC⊥BC1;(2)AC1∥平面CDB1.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】∵=++=-8a-2b=2,与不平行,∴四边形ABCD为梯形.2、D【解析】

根据题意,由向量数量积的计算公式可得cosθ的值,据此分析可得答案.【详解】设与的夹角为θ,由、的坐标可得||=5,||=3,•5×0+5×(﹣3)=﹣15,故,所以.故选D【点睛】本题考查向量数量积的坐标计算,涉及向量夹角的计算,属于基础题.3、C【解析】

由,化简可得,得到,又由四边形为平行四边形,即可得到答案.【详解】由,则,即,化简可得,所以,即,又由四边形为平行四边形,所以该四边形为矩形,故选C.【点睛】本题主要考查了向量的基本运算,以及向量的垂直关系的应用,其中解答中熟记向量的基本运算,以及向量的垂直的判定是解答的关键,着重考查了推理与运算能力,属于基础题.4、B【解析】

首先求出题中,,之间的关系,然后利用正切的和角公式求解即可.【详解】由题知,,所以.故选:B.【点睛】本题考查了正切的和角公式,属于基础题.5、B【解析】由题直角中,三条边恰好为三个连续的自然数,设三边为解得以三个顶点为圆心的扇形的面积和为由题故选B.6、B【解析】

分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S的值,条件框内的语句决定是否结束循环,模拟执行程序即可得到结果.【详解】程序在运行过程中各变量值变化如下:第一次循环k=2,S=2;是第二次循环k=3,S=7;是第三次循环k=4,S=18;是第四次循环k=5,S=41;是第五次循环=6,S=88;否故退出循环的条件应为k>5?,故选B.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.7、A【解析】

对两边平方,可得,进而可得,再根据,可知,由此即可求出结果.【详解】因为,所以,所以,所以,又,所以所以.故选:A.【点睛】本题主要考查了同角的基本关系,属于基础题.8、C【解析】

根据为第二象限角,,,去掉绝对值,即可求解.【详解】因为为第二象限角,∴,,∴,故选C.【点睛】本题重点考查三角函数值的符合,三角函数在各个象限内的符号可以结合口诀:一全正,二正弦,三正切,四余弦,增加记忆印象,属于基础题9、C【解析】分析:先求AB的长,在△ABC中,可求BC的长,进而由于CD⊥AD,所以CD=BCsin∠CBD,故可得山顶的海拔高度.详解:如图,∠A=30°,∠ACB=45°,

AB=900×80×13600∴在△ABC中,BC=102∵CD⊥AD,=102sin30点睛:本题以实际问题为载体,考查正弦定理的运用,关键是理解俯角的概念,属于基础题.10、C【解析】试题分析:根据已知可得:,所以,所以夹角为,故选择C考点:向量的运算二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

设的首项为,公比为,根据,列出方程组,求出和即可得解.【详解】设的首项为,公比为,则:,解之得,所以:.故答案为:.【点睛】本题考查等比数列中某项的求法,解题关键是根据题意列出方程组,需要注意的是为了简化运算不用直接求解,解出即可,属于基础题.12、【解析】由题意,基本事件总数为3×3=9,其中满足直线y=kx+b不经过第三象限的,即满足有k=-1,b=1或k=-1,b=2两种,故所求的概率为.13、【解析】

由题得,利用即可得解【详解】由题意知,,可得,又因为,所以可求得.故答案为:【点睛】本题考查了等比数列的通项公式其前n项和公式、数列极限的运算法则,考查了推理能力与计算能力,属于中档题.14、【解析】令,可得是首项为,公比为的等比数列,所以,,实数的最小值为,故答案为.15、4【解析】试题分析:由于根据题意x,y满足的关系式,作出可行域,当目标函数z=2x+3y在边界点(2,0)处取到最小值z=2×2+3×0=4,故答案为4.考点:本试题主要考查了线性规划的最优解的运用.点评:解决该试题的关键是解决线性规划的小题时,常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.16、【解析】

由等比数列前n项公式求出已知等式左边的和,再求解.【详解】易知不合题意,∴,若,则,不合题意,∴,,∴,,又,∴.故答案为:.【点睛】本题考查等比数列的前n项和公式,解题时需分类讨论,首先对的情形进行说明,然后按是否为1分类.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】

(I)由得出,可得公比为2,再求出后可得;(II)由(I)得,则,可用错位相减法求.【详解】解:(Ⅰ)因为所以即.由因为所以,公比所以(Ⅱ)由(Ⅰ)知,,所以.所以因为所以所以【点睛】本题考查等比数列的通项公式,考查错位相减法求和.数列求和根据数列的通项公式可采取不同的方法,一般有公式法、分组求和法、裂项相消法、错位相减法、倒序相加法等.18、(1);(2)460元.【解析】

(1)根据表中的数据,求得最高气温位于区间和最高气温低于20的天数,利用古典概型的概率计算公式,即可求得相应的概率;(2)分别求出温度不低于、温度在,以及温度低于时的利润及相应的概率,即可求解这一天销售这种酸奶的平均利润,得到答案.【详解】(1)根据往年销售经验,每天需求量与当天最高气温(单位:)有关.如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间,需求量为300瓶,如果最高气温低于20,需求量为200瓶,得到最高气温位于区间和最高气温低于20的天数为,所以六月份这种酸奶一天的需求量不超过300瓶的频率.(2)当温度大于等于时,需求量为500瓶,利润为:元,当温度在时,需求量为300瓶,利润为:元,当温度低于时,需求量为200瓶,利润为:元,平均利润为【点睛】本题主要考查了古典概型及其概率的计算,以及概率的实际应用,其中解答中认真审题,熟练应用古典概型及其概率的计算公式,以及平均利润的计算方法是解答的关键,着重考查了推理与运算能力,属于中档试题.19、(1)(2)【解析】

(1)直接利用余弦定理得到答案.(2)根据面积公式得到,利用余弦定理得到,计算得到答案.【详解】解:(1)由得.∴.又∵,∴.(2)∵,∴,则.把代入得即.∴,则.∴的周长为.【点睛】本题考查了余弦定理,面积公式,周长,意在考查学生对于公式的灵活运用.20、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用列举法列出所有可能,设事件为“顾客中三等奖”,的事件.由古典概型概率计算公式即可求解.(Ⅱ)先分别求得中一等奖、二等奖和三等奖的概率,根据对立事件的概率性质即可求得未中奖的概率.【详解】(Ⅰ)所有基本事件包括共16个设事件为“顾客中三等奖”,事件包含基本事件共4个,所以.(Ⅱ)由题意,中一等奖时“两个小球号码相加之和等于5”,这一事件包括基本事件共2个中二等奖时,“两个小球号码相加之和等于4”,这一事件包括基本事件共3个由(Ⅰ)可知中三等奖的概率为设事件为“顾客未中奖”则由对立事件概率的性质可得所以未中奖的概率为.【点睛】本题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论