版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省吉化一中2026届高一下数学期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角α终边上一点P(-2,3),则cos(A.32 B.-32 C.2.已知变量和满足关系,变量与正相关.下列结论中正确的是()A.与负相关,与负相关B.与正相关,与正相关C.与正相关,与负相关D.与负相关,与正相关3.某公司在甲、乙、丙、丁四个地区分别有150,120,180,150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本.记这项调查为①;在丙地区有20个大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法 B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法 D.简单随机抽样法,分层抽样法4.若函数()的最大值与最小正周期相同,则下列说法正确的是()A.在上是增函数 B.图象关于直线对称C.图象关于点对称 D.当时,函数的值域为5.设等比数列的公比为,其前项和为,前项之积为,并且满足条件:,,,下列结论中正确的是()A. B.C.是数列中的最大值 D.数列无最小值6.若、、为实数,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则7.已知函数在区间(1,2)上是增函数,则实数a的取值范围是()A.(0,+∞) B.(0,1) C.(0,1] D.(﹣1,0)8.函数的最大值为A.4 B.5 C.6 D.79.若点为圆C:的弦MN的中点,则弦MN所在直线的方程为()A. B. C. D.10.对具有线性相关关系的变量,有观测数据,已知它们之间的线性回归方程是,若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知一扇形的半径为,弧长为,则该扇形的圆心角大小为______.12.已知两个正实数x,y满足=2,且恒有x+2y﹣m>0,则实数m的取值范围是______________13.数列的前项和,则的通项公式_____.14.设为,的反函数,则的值域为______.15.在中,若,则____;16.若直线与直线互相平行,那么a的值等于_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的定义域;(2)当为何值时,等式成立?18.如图,在梯形中,,,,.(1)在中,求的长;(2)若的面积等于,求的长.19.如图所示,函数的图象与轴交于点,且该函数的最小正周期为.(1)求和的值;(2)已知点,点是该函数图象上一点,点是的中点,当时,求的值.20.己知函数.(1)若,,求;(2)当为何值时,取得最大值,并求出最大值.21.如图,已知是正三角形,EA,CD都垂直于平面ABC,且,,F是BE的中点,求证:(1)平面ABC;(2)平面EDB.(3)求几何体的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】角α终边上一点P(-2,3),所以cos(2、A【解析】
因为变量和满足关系,一次项系数为,所以与负相关;变量与正相关,设,所以,得到,一次项系数小于零,所以与负相关,故选A.3、B【解析】
此题为抽样方法的选取问题.当总体中个体较少时宜采用简单随机抽样法;当总体中的个体差异较大时,宜采用分层抽样;当总体中个体较多时,宜采用系统抽样.【详解】依据题意,第①项调查中,总体中的个体差异较大,应采用分层抽样法;第②项调查总体中个体较少,应采用简单随机抽样法.
故选B.【点睛】本题考查随机抽样知识,属基本题型、基本概念的考查.4、A【解析】
先由函数的周期可得,再结合三角函数的性质及三角函数值域的求法逐一判断即可得解.【详解】解:由函数()的最大值与最小正周期相同,所以,即,即,对于选项A,令,解得:,即函数的增区间为,当时,函数在为增函数,即A正确,对于选项B,令,解得,即函数的对称轴方程为:,又无解,则B错误,对于选项C,令,解得,即函数的对称中心为:,又无解,则C错误,对于选项D,,则,即函数的值域为,即D错误,综上可得说法正确的是选项A,故选:A.【点睛】本题考查了三角函数的性质,重点考查了三角函数值域的求法,属中档题.5、D【解析】
根据题干条件可得到数列>1,0<q<1,数列之和越加越大,故A错误;根据等比数列性质得到进而得到B正确;由前n项积的性质得到是数列中的最大值;从开始后面的值越来越小,但是都是大于0的,故没有最小值.【详解】因为条件:,,,可知数列>1,0<q<1,根据等比数列的首项大于0,公比大于0,得到数列项均为正,故前n项和,项数越多,和越大,故A不正确;因为根据数列性质得到,故B不对;前项之积为,所有大于等于1的项乘到一起,能够取得最大值,故是数列中的最大值.数列无最小值,因为从开始后面的值越来越小,但是都是大于0的,故没有最小值.故D正确.故答案为D.【点睛】本题考查了等比数列的通项公式及其性质、递推关系、不等式的解法,考查了推理能力与计算能力,属于中档题.6、B【解析】
利用等式的性质或特殊值法来判断各选项中不等式的正误.【详解】对于A选项,若,则,故A不成立;对于B选项,,在不等式同时乘以,得,另一方面在不等式两边同时乘以,得,,故B成立;对于选项C,在两边同时除以,可得,所以C不成立;对于选项D,令,,则有,,,所以D不成立.故选B.【点睛】本题考查不等式正误的判断,常用的判断方法有:不等式的基本性质、特殊值法以及比较法,在实际操作中,可结合不等式结构合理选择相应的方法进行判断,考查推理能力,属于基础题.7、C【解析】
由题意可得在上为减函数,列出不等式组,由此解得的范围.【详解】∵函数在区间上是增函数,∴函数在上为减函数,其对称轴为,∴可得,解得.故选:C.【点睛】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于基础题.8、B【解析】试题分析:因为,而,所以当时,取得最大值5,选B.【考点】正弦函数的性质、二次函数的性质【名师点睛】求解本题易出现的错误是认为当时,函数取得最大值.9、A【解析】
根据题意,先求出直线PC的斜率,根据MN与PC垂直求出MN的斜率,由点斜式,即可求出结果.【详解】由题意知,圆心的坐标为,则,由于MN与PC垂直,故MN的斜率,故弦MN所在的直线方程为,即.故选A【点睛】本题主要考查求弦所在直线方程,熟记直线的点斜式方程即可,属于常考题型.10、A【解析】
先求出,再由线性回归直线通过样本中心点即可求出.【详解】由题意,,因为线性回归直线通过样本中心点,将代入可得,所以.故选:A.【点睛】本题主要考查线性回归直线通过样本中心点这一知识点的应用,属常规考题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用扇形的弧长除以半径可得出该扇形圆心角的弧度数.【详解】由扇形的弧长、半径以及圆心角之间的关系可知,该扇形的圆心角大小为.故答案为:.【点睛】本题考查扇形圆心角的计算,解题时要熟悉扇形的弧长、半径以及圆心角之间的关系,考查计算能力,属于基础题.12、(-∞,1)【解析】
由x+2y(x+2y)()(1),运用基本不等式可得x+2y的最小值,由题意可得m<x+2y的最小值.【详解】两个正实数x,y满足2,则x+2y(x+2y)()(1)(1+2)=1,当且仅当x=2y=2时,上式取得等号,x+2y﹣m>0,即为m<x+2y,由题意可得m<1.故答案为:(﹣∞,1).【点睛】本题考查基本不等式的运用:“乘1法”求最值,考查不等式恒成立问题解法,注意运用转化思想,属于中档题.13、【解析】
根据和之间的关系,应用公式得出结果【详解】当时,;当时,;∴故答案为【点睛】本题考查了和之间的关系式,注意当和时要分开讨论,题中的数列非等差数列.本题属于基础题14、【解析】
求出原函数的值域可得出其反函数的定义域,取交集可得出函数的定义域,再由函数的单调性可求出该函数的值域.【详解】函数在上为增函数,则函数的值域为,所以,函数的定义域为.函数的定义域为,由于函数与函数单调性相同,可知,函数在上为增函数.当时,函数取得最小值;当时,函数取得最大值.因此,函数的值域为.故答案为:.【点睛】本题考查函数值域的求解,考查函数单调性的应用,明确两个互为反函数的两个函数具有相同的单调性是解题的关键,考查分析问题和解决问题的能力,属于中等题.15、【解析】试题分析:因为,所以.由正弦定理,知,所以==.考点:1、同角三角函数间的基本关系;2、正弦定理.16、;【解析】由题意得,验证满足条件,所以三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)根据对数的真数大于零,得出,解出该不等式即可得出函数的定义域;(2)根据对数的运算性质可得出关于的方程,解出即可.【详解】(1)由,得,所以,函数定义域为;(2)由,得,即,可得:,即,即,或,由于,得,所以,不合题意,所以,当时,等式成立.【点睛】本题考查了对数运算以及简单的对数方程的求解,解题时不要忽略真数大于零这一条件的限制,考查运算求解能力,属于基础题.18、(1);(2)【解析】
(1)首先利用同角三角函数的基本关系求出,再利用正弦定理求解即可.(2)求出梯形的高,再利用三角形的面积求解即可.【详解】解:(1)在梯形中,,,,.可得,由正弦定理可得:.(2)过作,交的延长线于则即梯形的高为,因为的面积等于,,,,【点睛】本题考查正弦定理、余弦定理的应用,三角形面积公式的应用,属于中档题.19、(1)..(2),或.【解析】试题分析:(1)由三角函数图象与轴交于点可得,则.由最小正周期公式可得.(2)由题意结合中点坐标公式可得点的坐标为.代入三角函数式可得,结合角的范围求解三角方程可得,或.试题解析:(1)将代入函数中,得,因为,所以.由已知,且,得.(2)因为点是的中点,,所以点的坐标为.又因为点在的图象上,且,所以,且,从而得,或,即,或.20、(1);(1),1.【解析】
(1)由题得,再求出x的值;(1)先化简得到,再利用三角函数的性质求函数的最大值及此时x的值.【详解】(1)令,则,因为,所以.(1),当,即时,的最大值为1.【点睛】本题主要考查解简单的三角方程,考查三角函数的最值,意在考查学生对这些知识的理解掌握水平,属于基础题.21、(1)见解析(2)见解析(3)【解析】
(1)如图:证明得到答案.(2)证明得到答案.(3)几何体转化为,利用体积公式得到答案.【详解】(1)∵F分别是BE的中点,取BA的中点M,∴FM∥EA,FMEA=1∵EA、CD都垂直于平面ABC,∴CD∥EA,∴CD∥FM,又CD=FM∴四边形FMCD是平行四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026甘肃武威古浪县公益性岗位工作人员招聘8人备考题库附答案详解(培优b卷)
- 2026江苏南通市紫琅中等职业技术学校教师岗位招聘16人备考题库附答案详解(满分必刷)
- 2026福建泉州丰泽区东湖实验幼儿园招聘备考题库带答案详解(典型题)
- 2026江苏南通市紫琅中等职业技术学校教师岗位招聘16人备考题库及参考答案详解1套
- 2026江西省肿瘤医院高层次人才招聘29人备考题库(13)带答案详解(新)
- 2026江西南昌进贤县融媒体中心招募就业见习生6人备考题库附参考答案详解(完整版)
- 2026浙江金华市武义县城市自来水有限公司招聘2人备考题库带答案详解(精练)
- 2026贵州生态能源职业学院招聘12人备考题库附答案详解(考试直接用)
- 冶金安全培训制度
- 食品厂生产质量处罚制度
- 2025年水利工程安全监测手册
- 汽车后市场培训课件
- 部队基本防病知识课件
- 金融机构安全自查报告
- 正压式消防空气呼吸器培训
- DB22∕T 3302-2021 木耳菌渣基质水稻育苗技术规程
- 2025年产品成本核算实操培训
- 延边大学本科生毕业论文(设计)撰写规范
- 旋压式止血带课件
- 粉笔线上协议班 合同
- ISO9001-2026质量管理体系中英文版标准条款全文
评论
0/150
提交评论