华大新2026届数学高一下期末学业质量监测试题含解析_第1页
华大新2026届数学高一下期末学业质量监测试题含解析_第2页
华大新2026届数学高一下期末学业质量监测试题含解析_第3页
华大新2026届数学高一下期末学业质量监测试题含解析_第4页
华大新2026届数学高一下期末学业质量监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

华大新2026届数学高一下期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆心为的圆与圆相外切,则圆的方程为()A. B.C. D.2.若等差数列的前5项之和,且,则()A.12 B.13 C.14 D.153.2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除:(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用…等,其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新的个税政策的税率表部分内容如下:级数一级二级三级…每月应纳税所得额元(含税)…税率(%)31020…现有李某月收入为19000元,膝下有一名子女,需赡养老人(除此之外无其它专项附加扣除),则他该月应交纳的个税金额为()A.570 B.890 C.1100 D.19004.圆周运动是一种常见的周期性变化现象,可表述为:质点在以某点为圆心半径为r的圆周上的运动叫“圆周运动”,如图所示,圆O上的点以点A为起点沿逆时针方向旋转到点P,若连接OA、OP,形成一个角,当角,则()A. B. C. D.15.设集合,则元素个数为()A.1 B.2 C.3 D.46.若,且,则的值是()A. B. C. D.7.若,则三个数的大小关系是()A. B.C. D.8.式子的值为()A. B.0 C.1 D.9.已知,当取得最小值时()A. B. C. D.10.观察下列几何体各自的三视图,其中有且仅有两个视图完全相同的是()①正方体②圆锥③正三棱柱④正四棱锥A.①② B.②④ C.①③ D.①④二、填空题:本大题共6小题,每小题5分,共30分。11.方程的解集是___________12.已知函数那么的值为.13.已知a,b为常数,若,则______;14.设当时,函数取得最大值,则______.15.在数列中,按此规律,是该数列的第______项16.若复数z满足z⋅2i=z2+1(其中i三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在三棱柱中,侧棱底面,,D为的中点,.(1)求证:平面;(2)求与所成角的余弦值.18.从全校参加科技知识竞赛初赛的学生试卷中,抽取一个样本,考察竞赛的成绩分布.将样本分成5组,绘成频率分布直方图(如图),图中从左到右各小组的小长方形的高之比是,最后一组的频数是6.请结合频率分布直方图提供的信息,解答下列问题:(1)样本的容量是多少?(2)求样本中成绩在分的学生人数;(3)从样本中成绩在90.5分以上的同学中随机地抽取2人参加决赛,求最高分甲被抽到的概率.19.已知函数的图象关于直线对称,且图象上相邻两个最高点的距离为.(1)求和的值;(2)当时,求函数的最大值和最小值;(3)设,若的任意一条对称轴与x轴的交点的横坐标不属于区间,求c的取值范围.20.已知数列满足,数列满足,且(1)求数列和的通项公式;(2)求数列的前项和.21.在中,角的对边分别为,的面积是30,.(1)求;(2)若,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

求出圆的圆心坐标和半径,利用两圆相外切关系,可以求出圆的半径,求出圆的标准方程,最后化为一般式方程.【详解】设的圆心为A,半径为r,圆C的半径为R,,所以圆心A坐标为,半径r为3,圆心距为,因为两圆相外切,所以有,故圆的标准方程为:,故本题选A.【点睛】本题考查了圆与圆的相外切的性质,考查了已知圆的方程求圆心坐标和半径,考查了数学运算能力.2、B【解析】试题分析:由题意得,,又,则,又,所以等差数列的公差为,所以.考点:等差数列的通项公式.3、B【解析】

根据题意,分段计算李某的个人所得税额,即可求解,得到答案.【详解】由题意,李某月应纳税所得额(含税)为元,不超过3000的部分的税额为元,超过3000元至12000元的部分税额为元,所以李某月应缴纳的个税金额为元.故选:B.【点睛】本题主要考查了分段函数的实际应用与函数值的计算问题,其中解答中认真审题,合理利用分段函数进行求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.4、A【解析】

运用求任意角的三角函数值的步骤:化正、脱周、变锐角和求值,可得所求值.【详解】.故选:A.【点睛】本题考查任意角三角函数值的求法,属于基础题.5、B【解析】

计算圆心到直线的距离,可知直线与圆相交,可得结果.【详解】由,圆心为,半径为1所以可知圆心到直线的距离为所以直线与圆相交,故可知元素个数为2故选:B【点睛】本题主要考查直线与圆的位置关系判断,属基础题.6、A【解析】

对两边平方,可得,进而可得,再根据,可知,由此即可求出结果.【详解】因为,所以,所以,所以,又,所以所以.故选:A.【点睛】本题主要考查了同角的基本关系,属于基础题.7、A【解析】

根据对数函数以及指数函数的性质比较,b,c的大小即可.【详解】=log50.2<0,b=20.5>1,0<c=0.52<1,则,故选A.【点睛】本题考查了对数函数以及指数函数的性质,是一道基础题.8、B【解析】

根据两角和的余弦公式,得到原式,即可求解,得到答案.【详解】由两角和的余弦公式,可得,故选B.【点睛】本题主要考查了两角和的余弦公式的化简求值,其中解答中熟记两角和的余弦公式是解答的关键,着重考查了运算与求解能力,属于基础题.9、D【解析】

可用导函数解决最小值问题,即可得到答案.【详解】根据题意,令,则,而当时,,当时,,则在处取得极小值,故选D.【点睛】本题主要考查函数的最值问题,意在考查学生利用导数工具解决实际问题的能力,难度中等.10、B【解析】

正方体的三个视图都相同,①不符合;圆锥的正视图和侧视图相同都是三角形,俯视图为圆,②符合;正三棱柱的俯视图是等边三角形,正视图和侧视图都是长方形,但是长不同宽相同,③不符合;正四棱锥的俯视图是正方形,正视图和侧视图都是相同的等腰三角形,④符合,故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】

方程的根等价于或,分别求两个三角方程的根可得答案.【详解】方程或,所以或,所以或.故答案为:或.【点睛】本题考查三角方程的求解,求解时可利用单位圆中的三角函数线,注意终边相同角的表示,考查运算求解能力和数形结合思想的运用.12、【解析】试题分析:因为函数所以==.考点:本题主要考查分段函数的概念,计算三角函数值.点评:基础题,理解分段函数的概念,代入计算.13、2【解析】

根据极限存在首先判断出的值,然后根据极限的值计算出的值,由此可计算出的值.【详解】因为,所以,又因为,所以,所以.故答案为:.【点睛】本题考查根据极限的值求解参数,难度较易.14、;【解析】f(x)=sinx-2cosx==sin(x-φ),其中sinφ=,cosφ=,当x-φ=2kπ+(k∈Z)时,函数f(x)取得最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cosθ=-sinφ=-.15、【解析】

分别求出,,,结果构成等比数列,进而推断数列是首相为2,公比为2的等比数列,进而求得数列的通项公式,再由求得答案.【详解】,,,依此类推可得,,,即.,解得.故答案为:7.【点睛】本题考查利用数列的递推关系求数列的通项公式,求解的关键在于推断是等比数列,再用累加法求得数列的通项公式,考查逻辑推理能力和运算求解能力.16、1【解析】设z=a+bi,a,b∈R,则由z⋅2则-2b=a2+b2+12a=0三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】

(1)连接,设与相交于点O,连接OD.证明OD为的中位线,得,即可证明;(2)由(1)可知,为与所成的角或其补角,在中,利用余弦定理求解即可【详解】(1)证明:如图,连接,设与相交于点O,连接OD.∵四边形是平行四边形.∴点O为的中点.∵D为AC的中点,∴OD为的中位线,平面,平面,平面.(2)由(1)可知,为与所成的角或其补角在中,D为AC的中点,则同理可得,在中,与BD所成角的余弦值为.【点睛】本题考查线面平行的判定,异面直线所成的角,考查空间想象能力与计算能力是基础题18、(1)48;(2)30;(3)【解析】

(1)设样本容量为,列方程求解即可;(2)根据比例列式求解即可;(3)根据比例得成绩在90.5分以上的同学有6人,抽取2人参加决赛,列举出总的基本事件个数,然后列举出最高分甲被抽到的基本事件个数,根据概率公式可得结果.【详解】解:(1)设样本容量为,则,解得,所以样本的容量是48;(2)样本中成绩在分的学生人数为:人;(3)样本中成绩在90.5分以上的同学有人,设这6名同学分别为,其中就是甲,从这6名同学中随机地抽取2人参加决赛有:共15个基本事件,其中最高分甲被抽到的有共5个基本事件,则最高分甲被抽到的概率为.【点睛】本题考查频率,频数,样本容量间的关系,考查古典概型的概率公式,重点是列举出总的基本事件和满足题目要求的基本事件,是基础题.19、(1),(2);.(3)【解析】

(1)由相邻最高点距离得周期,从而可得,由对称性可求得;(2)结合正弦函数性质可得最值.(3),先由半个周期大于得出的一个范围,在此范围内再寻找,求出对称轴,由对称轴且得的范围.【详解】(1)因为的图象上相邻两个最高点的距离为,所以的最小正周期,而,又因为的图象关于直线对称,所以,即,又,所以.综上,,.(2)由(1)知,当时,,所以,当即时,;当,即时,.(3),的任意一条对称轴与x轴的交点的横坐标都不属于区间,,即,令,得,且,得,当时,,当时,,当时,,故所求范围.【点睛】本题考查由三角函数性质求函数解析式,考查正弦函数的最值,考查函数的对称性.掌握正弦函数性质是解题关键.20、(1);(2)【解析】

(1)由等差数列和等比数列的定义、可得所求通项公式;(2)求得,由数列的错位相减法求和,结合等比数列的求和公式可得所求和.【详解】解:(1)∵,即,,∴为首项为1,公差为2的等差数列,即;∵,即有,∴为首项为1,公比为的等比数列,即;(2),∴,∴,两式相减可得,化简可得【点睛】本题主要考查等差数列和等比数列的定义、通项公式和求和公式的运用,考查数列的错位相减法求和,化简运算能力,属于中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论