版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽省示范性高中培优联盟高一下数学期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某市举行“精英杯”数学挑战赛,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校所有学生的成绩均在区间内,其频率分布直方图如图所示,该校有130名学生获得了复赛资格,则该校参加初赛的人数约为()A.200 B.400 C.2000 D.40002.角的终边在直线上,则()A. B. C. D.3.的内角的对边分别为,若的面积为,则()A. B. C. D.4.若干个人站成一排,其中为互斥事件的是()A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”5.对于空间中的两条直线,和一个平面,下列结论正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则6.若,则下列不等式不成立的是()A. B. C. D.7.不等式的解集是()A. B.C. D.8.直线y=﹣x+1的倾斜角是()A.30∘ B.45∘ C.1359.设是等比数列,有下列四个命题:①是等比数列;②是等比数列;③是等比数列;④是等差数列.其中正确命题的个数是()A. B. C. D.10.在中,角均为锐角,且,则的形状是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系xOy中,双曲线的右支与焦点为F的抛物线交于A,B两点若,则该双曲线的渐近线方程为________.12.方程的解为_________.13.已知不等式的解集为,则________.14.已知,且,则的取值范围是____________.15.关于的方程()的两虚根为、,且,则实数的值是________.16.圆与圆的公共弦长为______________。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线恒过定点,圆经过点和定点,且圆心在直线上.(1)求圆的方程;(2)已知点为圆直径的一个端点,若另一端点为点,问轴上是否存在一点,使得为直角三角形,若存在,求出的值;若不存在,说明理由.18.已知函数.(I)当时,求不等式的解集;(II)若关于的不等式有且仅有一个整数解,求正实数的取值范围.19.等差数列中,公差,,.(1)求的通项公式;(2)若,求数列的前项和.20.已知函数,作如下变换:.(1)分别求出函数的对称中心和单调增区间;(2)写出函数的解析式、值域和最小正周期.21.在中,分别是内角所对的边,已知.(1)求角;(2)若,求的周长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由频率和为1,可算得成绩大于90分对应的频率,然后由频数÷总数=频率,即可得到本题答案.【详解】由图,得成绩大于90分对应的频率=,设该校参加初赛的人数为x,则,得,所以该校参加初赛的人数约为200.故选:A【点睛】本题主要考查频率直方图的相关计算,涉及到频率和为1以及频数÷总数=频率的应用.2、C【解析】
先由直线的斜率得出,再利用诱导公式将分式化为弦的一次分式齐次式,并在分子分母中同时除以,利用弦化切的思想求出所求代数式的值.【详解】角的终边在直线上,,则,故选C.【点睛】本题考查诱导公式化简求值,考查弦化切思想的应用,弦化切一般适用于以下两个方面:(1)分式为角弦的次分式齐次式,在分子分母中同时除以,可以弦化切;(2)代数式为角的二次整式,先除以,转化为角弦的二次分式其次式,然后在分子分母中同时除以,可以实现弦化切.3、C【解析】
由题意可得,化简后利用正弦定理将“边化为角“即可.【详解】解:的面积为,,,故选:C.【点睛】本题主要考查正弦定理的应用和三角形的面积公式,属于基础题.4、A【解析】
根据不能同时发生的两个事件,叫互斥事件,依次判断.【详解】根据互斥事件不能同时发生,判断A是互斥事件;B、C、D中两事件能同时发生,故不是互斥事件;
故选A.【点睛】本题考查了互斥事件的定义.是基础题.5、C【解析】
依次分析每个选项中两条直线与平面的位置关系,确定两条直线的位置关系即可.【详解】平行于同一平面的两条直线不一定相互平行,故选项A错误,平行于平面的直线不一定与该平面内的直线平行,故选项B错误,垂直于平面的直线,垂直于与该平面平行的所有线,故选项C正确,垂直于同一平面的两条直线相互平行,故选项D错误.故选:C.【点睛】本题考查了直线与平面位置关系的辨析,属于基础题.6、B【解析】
根据不等式的基本性质、重要不等式、函数的单调性即可得出结论.【详解】解:∵,∴,,∴,即,故A成立;,即,故B不成立;,即,故C成立;∵指数函数在上单调递增,且,∴,故D成立;故选:B.【点睛】本题主要考查不等式的基本性质,作差法比较大小,属于基础题.7、D【解析】
把不等式,化简为不等式,即可求解,得到答案.【详解】由题意,不等式,可化为,即,解得或,所以不等式的解集为.故选:D.【点睛】本题主要考查了分式不等式的求解,其中解答中熟记分式不等式的解法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.8、C【解析】
由直线方程可得直线的斜率,进而可得倾斜角.【详解】直线y=﹣x+1的斜率为﹣1,设倾斜角为α,则tanα=﹣1,∴α=135°故选:C.【点睛】本题考查直线的倾斜角和斜率的关系,属基础题.9、C【解析】
设,得到,,,再利用举反例的方式排除③【详解】设,则:,故是首项为,公比为的等比数列,①正确,故是首项为,公比为的等比数列,②正确取,则,不是等比数列,③错误.,故是首项为,公差为的等差数列,④正确故选:C【点睛】本题考查了等差数列,等比数列的判断,找出反例可以快速的排除选项,简化运算,是解题的关键.10、C【解析】,又角均为锐角,则,,且中,,的形状是钝角三角形,故选C.【方法点睛】本题主要考查利用诱导公式、正弦函数的单调性以及判断三角形形状,属于中档题.判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据题意到,联立方程得到,得到答案.【详解】,故.,故,故,故.故双曲线渐近线方程为:.故答案为:.【点睛】本题考查了双曲线的渐近线问题,意在考查学生的计算能力和综合应用能力.12、【解析】
根据特殊角的三角函数及正切函数的周期为kπ,即可得到原方程的解.【详解】则故答案为:【点睛】此题考查学生掌握正切函数的图象及周期性,是一道基础题.13、-7【解析】
结合一元二次不等式和一元二次方程的性质,列出方程组,求得的值,即可得到答案.【详解】由不等式的解集为,可得,解得,所以.故答案为:.【点睛】本题主要考查了一元二次不等式的解法,以及一元二次方程的性质,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】
利用正弦函数的定义域求得值域,即的范围,再根据反余弦函数的定义可求得的取值范围.【详解】因为且,所以,则根据反余弦函数的定义可得,则的取值范围是.故答案为:【点睛】本题考查了正弦函数的定义域和值域,考查了反余弦函数的定义,属于基础题.15、5【解析】
关于方程两数根为与,由根与系数的关系得:,,由及与互为共轭复数可得答案.【详解】解:与是方程的两根由根与系数的关系得:,,由与为虚数根得:,,则,解得,经验证,符合要求,故答案为:.【点睛】本题考查根与系数的关系的应用.求解是要注意与为虚数根情形,否则漏解,属于基础题.16、【解析】
利用两圆一般方程求两圆公共弦方程,求其中一圆到公共弦的距离,利用直线被圆截得的弦长公式可得所求.【详解】由两圆方程相减得两圆公共弦方程为,即,圆化为,圆心到直线的距离为1,所以两圆公共弦长为,故答案为.【点睛】本题考查两圆位置关系,直线与圆的位置关系,考查运算能力,属于基本题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】
(1)先求出直线过定点,设圆的一般方程,由题意列方程组,即可求圆的方程;(2)由(1)可知:求得直线的斜率,根据对称性求得点坐标,由在圆外,所以点不能作为直角三角形的顶点,分类讨论,即可求得的值.【详解】(1)直线的方程可化为,由解得∴定点的坐标为.设圆的方程为,则圆心则依题意有解得∴圆的方程为;(2)由(1)知圆的标准方程为,∴圆心,半径.∵是直径的两个端点,∴圆心是与的中点,∵轴上的点在圆外,∴是锐角,即不是直角顶点.若是的直角顶点,则,得;若是的直角顶点,则,得.综上所述,在轴上存在一点,使为直角三角形,或.【点睛】本题考查圆的方程的求法,直线与圆的位置关系,考查分类讨论思想,属于中档题.18、(I);(II),或【解析】
(I)直接解不等式得解集;(II)对a分类讨论解不等式分析找到a满足的不等式,解不等式即得解.【详解】(I)当时,不等式为,不等式的解集为,所以不等式的解集为;(II)原不等式可化为,①当,即时,原不等式的解集为,不满足题意;②当,即时,,此时,所以;③当,即时,,所以只需,解得;综上所述,,或.【点睛】本题主要考查一元二次不等式的解法和解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1)(2)【解析】
(1)由和可列出方程组,解出和,即得通项公式;(2)将(1)中所得通项公式代入,列项,用裂项相消法求的前n项和.【详解】解:(1)因为,,所以因为,所以故的通项公式为.(2)因为,所以.【点睛】本题考查求等差数列通项公式和用裂项相消法求数列前n项和,是典型考题.20、(1),;(2),,.【解析】
(1)由,直接利用对称中心和增区间公式得到答案.(2)根据变换得到函数的解析式为,再求值域和最小正周期.【详解】由题意知:(1)由得对称中心,由,得:单调增区间为,(2)所求解析式为:0值域:最小正周期:.【点睛】本题考查了三角函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026江西吉安市欣荣文化影视有限公司招聘劳务派遣人员4人备考题库附参考答案详解ab卷
- 广安市广安区就业创业促进中心关于2026年第二批公益性岗位招聘备考题库及一套答案详解
- 2026贵州黔西南州望谟县医疗保障局招聘公益性岗位人员1人备考题库(含答案详解)
- 2026河北医科大学第三医院劳务派遣工作人员招聘15人备考题库含答案详解ab卷
- 2026浙江省财务开发有限责任公司招聘备考题库带答案详解ab卷
- 2026江苏淮安淮阴工学院招聘工作人员120人备考题库附参考答案详解(满分必刷)
- 2026江西赣州市信丰县第五中学日语学科非编教学人员招聘备考题库含答案详解(满分必刷)
- 2026海南三亚市市场监督管理局上半年招聘下属事业单位工作人员1人备考题库(第1号)附参考答案详解(考试直接用)
- 2026河南新乡市金瀚学校教师招聘19人备考题库带答案详解(综合卷)
- 2026河北秦皇岛市妇幼保健院选聘3人备考题库带答案详解(突破训练)
- 商铺代理出租协议8篇
- 2025年上海市高考生物一模分类汇编:生物与环境(含答案)
- 的股权继承公证书范本
- 2025年威海文旅发展集团有限公司招聘笔试参考题库含答案解析
- 《梅毒诊断及治疗》课件
- 购买助动车合同模板
- 三年级上册语文 1-8单元 基础知识默写单(有答案)
- 2024年高考一轮复习精细讲义第14讲圆周运动(原卷版+解析)
- DL∕T 5366-2014 发电厂汽水管道应力计算技术规程
- YDT 2323-2016 通信配电系统电能质量补偿设备
- GB/T 23986.2-2023色漆和清漆挥发性有机化合物(VOC)和/或半挥发性有机化合物(SVOC)含量的测定第2部分:气相色谱法
评论
0/150
提交评论