版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省滁州市西城区中学2026届数学高一下期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知非零向量、,“函数为偶函数”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件2.已知向量,,若,则与的夹角为()A. B. C. D.3.在中,,为边上的一点,且,若为的角平分线,则的取值范围为()A. B.C. D.4.执行如图所示的程序框图,令,若,则实数a的取值范围是A. B.C. D.5.已知数列满足,且,其前n项之和为,则满足不等式的最小整数n是()A.5 B.6 C.7 D.86.设等差数列的前项和为,若,,则的值为()A. B. C. D.7.在数列中,,且数列是等比数列,其公比,则数列的最大项等于()A. B. C.或 D.8.已知锐角满足,则()A. B. C. D.9.已知向量满足:,,,则()A. B. C. D.10.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10记为数列,将可被5整除的三角形数,按从小到大的顺序组成一个新数列,可以推测:()A.1225 B.1275 C.2017 D.2018二、填空题:本大题共6小题,每小题5分,共30分。11.已知,是第三象限角,则.12.设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β,下列四个命题正确的是________.①若l⊥β,则α⊥β;②若α⊥β,则l⊥m;③若l∥β,则α∥β;④若α∥β,则l∥m.13.某几何体是由一个正方体去掉一个三棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积是___14.球的内接圆柱的表面积为,侧面积为,则该球的表面积为_______15.在中,若,则____;16.若,则_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前n项和为(),且满足,().(1)求证是等差数列;(2)求数列的通项公式.18.某公司为了提高职工的健身意识,鼓励大家加入健步运动,要求200名职工每天晚上9:30上传手机计步截图,对于步数超过10000的予以奖励.图1为甲乙两名职工在某一星期内的运动步数统计图,图2为根据这星期内某一天全体职工的运动步数做出的频率分布直方图.(1)在这一周内任选两天检查,求甲乙两人两天全部获奖的概率;(2)请根据频率分布直方图,求出该天运动步数不少于15000的人数,并估计全体职工在该天的平均步数;(3)如果当天甲的排名为第130名,乙的排名为第40名,试判断做出的是星期几的频率分布直方图.19.若数列满足:存在正整数,对任意的,使得成立,则称为阶稳增数列.(1)若由正整数构成的数列为阶稳增数列,且对任意,数列中恰有个,求的值;(2)设等比数列为阶稳增数列且首项大于,试求该数列公比的取值范围;(3)在(1)的条件下,令数列(其中,常数为正实数),设为数列的前项和.若已知数列极限存在,试求实数的取值范围,并求出该极限值.20.随着高校自主招生活动的持续开展,我市高中生掀起了参与数学兴趣小组的热潮.为调查我市高中生对数学学习的喜好程度,从甲、乙两所高中各自随机抽取了40名学生,记录他们在一周内平均每天学习数学的时间,并将其分成了6个区间:、、、、、,整理得到如下频率分布直方图:(1)试估计甲高中学生一周内平均每天学习数学的时间的中位数甲(精确到0.01);(2)判断从甲、乙两所高中各自随机抽取的40名学生一周内平均每天学习数学的时间的平均值甲与乙及方差甲与乙的大小关系(只需写出结论),并计算其中的甲、甲(同一组中的数据用该组区间的中点值作代表).21.如图几何体中,底面为正方形,平面,,且.(1)求证:平面;(2)求与平面所成角的大小.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据,求出向量的关系,再利用必要条件和充分条件的定义,即可判定,得到答案.【详解】由题意,函数,又为偶函数,所以,则,即,可得,所以,若,则,所以,则,所以函数是偶函数,所以“函数为偶函数”是“”的充要条件.故选C.【点睛】本题主要考查了向量的数量积的运算,函数奇偶性的定义及其判定,以及充分条件和必要条件的判定,着重考查了推理与运算能力,属于基础题.2、D【解析】∵,,⊥,∴,解得.∴.∴,又.设向量与的夹角为,则.又,∴.选D.3、A【解析】
先根据正弦定理用角A,C表示,再根据三角形内角关系化基本三角函数形状,最后根据正弦函数性质得结果.【详解】因为,为的角平分线,所以,在中,,因为,所以,在中,,因为,所以,所以,则,因为,所以,所以,则,即的取值范围为.选A.【点睛】本题考查函数正弦定理、辅助角公式以及正弦函数性质,考查基本分析求解能力,属中档题.4、D【解析】该程序的功能是计算并输出分段函数.当时,,解得;当时,,解得;当时,,无解.综上,,则实数a的取值范围是.故选D.5、C【解析】
首先分析题目已知3an+1+an=4(n∈N*)且a1=9,其前n项和为Sn,求满足不等式|Sn﹣n﹣6|<的最小整数n.故可以考虑把等式3an+1+an=4变形得到,然后根据数列bn=an﹣1为等比数列,求出Sn代入绝对值不等式求解即可得到答案.【详解】对3an+1+an=4变形得:3(an+1﹣1)=﹣(an﹣1)即:故可以分析得到数列bn=an﹣1为首项为8公比为的等比数列.所以bn=an﹣1=8×an=8×+1所以|Sn﹣n﹣6|=解得最小的正整数n=7故选C.【点睛】此题主要考查不等式的求解问题,其中涉及到可化为等比数列的数列的求和问题,属于不等式与数列的综合性问题,判断出数列an﹣1为等比数列是题目的关键,有一定的技巧性属于中档题目.6、D【解析】
利用等差数列的前项和的性质可求的值.【详解】因为,所以,故,故选D.【点睛】一般地,如果为等差数列,为其前项和,则有性质:(1)若,则;(2)且;(3)且为等差数列;(4)为等差数列.7、C【解析】
在数列中,,,且数列是等比数列,其公比,利用等比数列的通项公式可得:.可得,利用二次函数的单调性即可得出.【详解】在数列中,,,且数列是等比数列,其公比,.,.由或8时,,或9时,,数列的最大项等于或.故选:C.【点睛】本题考查等比数列的通项公式、累乘法、二次函数的单调性,考查推理能力与计算能力,属于中档题.8、D【解析】
根据为锐角可求得,根据特殊角三角函数值可知,从而得到,进而求得结果.【详解】,又,即本题正确选项:【点睛】本题考查三角函数值的求解问题,关键是能够熟悉特殊角的三角函数值,根据角的范围确定特殊角的取值.9、D【解析】
首先根据题中条件求出与的数量积,然后求解即可.【详解】由题有,即,,所以.故选:D.【点睛】本题主要考查了向量的模,属于基础题.10、A【解析】
通过寻找规律以及数列求和,可得,然后计算,可得结果.【详解】根据题意可知:则由…可得所以故选:A【点睛】本题考查不完全归纳法的应用,本题难点在于找到,属难题,二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】试题分析:根据同角三角函数的基本关系知,,化简整理得①,又因为②,联立方程①②即可解得:,,又因为是第三象限角,所以,故.考点:同角三角函数的基本关系.12、①【解析】
由线面的平行垂直的判定和性质一一检验即可得解.【详解】由平面与平面垂直的判定可知,①正确;②中,当α⊥β时,l,m可以垂直,也可以平行,也可以异面;③中,l∥β时,α,β可以相交;④中,α∥β时,l,m也可以异面.故答案为①.【点睛】本题主要考查了线面、面面的垂直和平行位置关系的判定和性质,属于基础题.13、6【解析】
先作出几何体图形,再根据几何体的体积等于正方体的体积减去三棱柱的体积计算.【详解】几何体如图所示:去掉的三棱柱的高为2,底面面积是正方体底面积的,所以三棱柱的体积:所以几何体的体积:【点睛】本题考查三视图与几何体的体积.关键是作出几何体的图形,方法:先作出正方体的图形,再根据三视图“切”去多余部分.14、【解析】
设底面半径为,圆柱的高为,根据圆柱求得和的值,进而利用圆柱的轴截面求得球的半径,利用球的表面积公式,即可求解.【详解】由题意,设底面半径为,圆柱的高为,则圆柱的底面面积为,解得,侧面积,解得,则圆柱的轴截面是边长分别为4和3的矩形,其对角线长为5,所以外接球的半径为,所以球的表面积为.【点睛】本题主要考查了圆柱的表面积和侧面积公式的应用,以及球的表面积公式应用,其中解答中正确理解空间几何体的结构特征是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于基础题.15、【解析】试题分析:因为,所以.由正弦定理,知,所以==.考点:1、同角三角函数间的基本关系;2、正弦定理.16、【解析】
利用诱导公式求解即可【详解】,故答案为:【点睛】本题考查诱导公式,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】
(1)当时,由代入,化简得出,由此可证明出数列是等差数列;(2)求出数列的通项公式,可得出,由可得出在时的表达式,再对是否满足进行检验,可得出数列的通项公式.【详解】(1)当时,,,即,,等式两边同时除以得,即,因此,数列是等差数列;(2)由(1)知,数列是以为首项,以为公差的等差数列,,则.,得.不适合.综上所述,.【点睛】本题考查等差数列的证明,同时也考查了数列通项公式的求解,解题的关键就是利用关系式进行计算,考查推理能力与计算能力,属于中等题.18、(1),(2)80人,13.25千步,(3)星期二【解析】
(1)根据统计图统计出甲乙两人合格的天数,再计算全部获奖概率;(2)根据频率分布直方图求出人数及平均步数;(3)根据频率分布直方图计算出甲乙的步数从而判断出星期几.【详解】(1)由统计图可知甲乙两人步数超过10000的有星期一、星期二、星期五、星期天设事件A为甲乙两人两天全部获奖,则(2)由图可知,解得所以该天运动步数不少于15000的人数为(人)全体职工在该天的平均步数为:(千步)(3)因为假设甲的步数为千步,乙的步数为千步由频率分布直方图可得:,解得,解得所以可得出的是星期二的频率分布直方图.【点睛】本题考查利用频率分布直方图来求平均数和概率,要注意计算的准确性,较简单.19、(1);(2);(3).【解析】
(1)设,由题意得出,求出正整数的值即可;(2)根据定义可知等比数列中的奇数项构成的等比数列为阶稳增数列,偶数项构成的等比数列也为阶稳增数列,分和两种情况讨论,列出关于的不等式,解出即可;(3)求出,然后分、和三种情况讨论,求出,结合数列的极限存在,求出实数的取值范围.【详解】(1)设,由于数列为阶稳增数列,则,对任意,数列中恰有个,则数列中的项依次为:、、、、、、、、、、、、、、、、,设数列中值为的最大项数为,则,由题意可得,即,,解得,因此,;(2)由于等比数列为阶稳增数列,即对任意的,,且.所以,等比数列中的奇数项构成的等比数列为阶稳增数列,偶数项构成的等比数列也为阶稳增数列.①当时,则等比数列中每项都为正数,由可得,整理得,解得;②当时,(i)若为正奇数,可设,则,由,得,即,整理得,解得;(ii)若为正偶数时,可设,则,由,得,即,整理得,解得.所以,当时,等比数列为阶稳增数列.综上所述,实数的取值范围是;(3),由(1)知,则.①当时,,,则,此时,数列的极限不存在;②当时,,,上式下式得,所以,,则.(i)若时,则,此时数列的极限不存在;(ii)当时,,此时,数列的极限存在.综上所述,实数的取值范围是.【点睛】本题考查数列新定义“阶稳增数列”的应用,涉及等比数列的单调性问题、数列极限的存在性问题,同时也考查了错位相减法求和,解题的关键就是理解新定义“阶稳增数列”,考查分析问题和解决问题能力,考查了分类讨论思想的应用,属于难题.20、(1);(2)甲乙,甲乙,甲=,甲=【解析】
(1)根据每组小矩形的面积确定中位数所在区间,即可求解;(2)根据直方图特征即可判定甲乙,甲乙,根据平均数和方差的公式分别计算求值.【详解】(1)由甲高中频率分布直方图可得:第一组频率0.1,第二组频率0.2,第三组频率0.3,所以中位数在第三组,甲;(2)根据两个频率分布直方图可得:甲乙,甲乙甲=甲=【点睛】此题考查频率分布直方图,根据两组直方图特征判断中位数和方差的大小关系,求中位数,平均数和方差,关键在于熟练掌握相关数据的求法,准确计算得解.21、(1)见解析(2)【解析】
(1)由,,结合面面平行判
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026贵州医科大学第三附属医院招聘10人备考题库带答案详解(新)
- 2026湖南省交通科研院招聘博士后研究人员备考题库含答案详解(满分必刷)
- 2026江西赣州赣职网管理咨询有限公司招聘2名工作人员备考题库含答案详解(轻巧夺冠)
- 2026西藏昌都市人民医院招聘20人备考题库及答案详解(易错题)
- 2026重庆国创投资管理有限公司招聘4人备考题库含答案详解(培优)
- 2026江西吉安市农作物良种场招聘见习人员4人备考题库含答案详解
- 2026辽宁对外经贸学院电商与物流学院招聘专任教师备考题库含答案详解(突破训练)
- 2026浙江省城建融资租赁有限公司招聘5人备考题库含答案详解(b卷)
- 2026海南海口市纪委监委所属事业单位招聘4人备考题库(第一号)及完整答案详解一套
- 2026福建厦门一中集美分校(灌口中学)非在编、顶岗教师招聘3人备考题库及参考答案详解1套
- 湖北省圆创高中名校联盟2026届高三2月第三次联合测评生物试卷(含答案解析)
- 2025-2026学年河北省沧州市四校联考高三上学期期中考试语文试题(解析版)
- 大推力液体火箭发动机综合测试中心建设项目可行性研究报告模板立项申批备案
- 2025年航空发动机涂层材料技术突破行业报告
- 家谱图评估与干预
- 雇佣老人看门协议书
- 赠与财物协议书模板
- 江苏省苏州市相城区南京师范大学苏州实验学校2025年苏教版小升初考试数学试卷(含答案)
- 高一年级英语上册阅读理解专项练习及答案(50篇)
- 个人借款合同模板
- 2025年全国中级经济师考试真题卷含答案经济基础知识
评论
0/150
提交评论