江苏省苏州高新区一中2026届数学高一下期末综合测试模拟试题含解析_第1页
江苏省苏州高新区一中2026届数学高一下期末综合测试模拟试题含解析_第2页
江苏省苏州高新区一中2026届数学高一下期末综合测试模拟试题含解析_第3页
江苏省苏州高新区一中2026届数学高一下期末综合测试模拟试题含解析_第4页
江苏省苏州高新区一中2026届数学高一下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州高新区一中2026届数学高一下期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的内角的对边分别为,若,则()A. B. C. D.2.已知直线与互相垂直,垂足坐标为,且,则的最小值为()A.1 B.4 C.8 D.93.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”4.已知变量,满足约束条件则取最大值为()A. B. C.1 D.25.已知正四棱锥的底面边长为2,侧棱长为,则该正四棱锥的体积为()A. B. C. D.6.设为等差数列的前项和,.若,则()A.的最大值为 B.的最小值为 C.的最大值为 D.的最小值为7.将正整数按第组含个数分组:那么所在的组数为()A. B. C. D.8.有一个内角为120°的三角形的三边长分别是m,m+1,m+2,则实数m的值为()A.1 B. C.2 D.9.两圆和的位置关系是()A.相离 B.相交 C.内切 D.外切10.若直线与平行,则实数的值为()A.或 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,若,则等于__________.12.已知三棱锥的底面是腰长为2的等腰直角三角形,侧棱长都等于,则其外接球的体积为______.13.设是等差数列的前项和,若,则________14.若的面积,则=15.当函数取得最大值时,=__________.16.已知正方形,向正方形内任投一点,则的面积大于正方形面积四分之一的概率是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知偶函数.(1)若方程有两不等实根,求的范围;(2)若在上的最小值为2,求的值.18.设平面三点、、.(1)试求向量的模;(2)若向量与的夹角为,求;(3)求向量在上的投影.19.已知的三个内角,,的对边分别为,,,函数,且当时,取最大值.(1)若关于的方程,有解,求实数的取值范围;(2)若,且,求的面积.20.数列的前n项和满足.(1)求证:数列是等比数列;(2)若数列为等差数列,且,求数列的前n项.21.李克强总理在2018年政府工作报告指出,要加快建设创新型国家,把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力.某手机生产企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到一组销售数据,如表所示:单价(千元)销量(百件)已知.(1)若变量具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程;(2)用(1)中所求的线性回归方程得到与对应的产品销量的估计值.(参考公式:线性回归方程中的估计值分别为)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

首先通过正弦定理将边化角,于是求得,于是得到答案.【详解】根据正弦定理得:,即,而,所以,又为三角形内角,所以,故选B.【点睛】本题主要考查正弦定理的运用,难度不大.2、B【解析】

代入垂足坐标,可得,然后根据基本不等式,可得结果.【详解】由两条直线的交点坐标为所以代入可得,即又,所以即当且仅当,即时,取等号故选:B【点睛】本题主要考查基本不等式,属基础题.3、C【解析】

结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.4、C【解析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件作出可行域如图,当,即点,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,有最大值为.故选:C.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.5、D【解析】

求出正四棱锥的高后可求其体积.【详解】正四棱锥底面的对角线的长度为,故正四棱锥的高为,所以体积为,故选D.【点睛】正棱锥中,棱锥的高、斜高、侧棱和底面外接圆的半径可构成四个直角三角形,它们沟通了棱锥各个几何量之间的关系,解题中注意利用它们实现不同几何量之间的联系.6、C【解析】

由已知条件推导出(n2﹣n)d<2n2d,从而得到d>0,所以a1<0,a8>0,由此求出数列{Sn}中最小值是S1.【详解】∵(n+1)Sn<nSn+1,∴Sn<nSn+1﹣nSn=nan+1即na1na1+n2d,整理得(n2﹣n)d<2n2d∵n2﹣n﹣2n2=﹣n2﹣n<0∴d>0∵1<0∴a1<0,a8>0数列的前1项为负,故数列{Sn}中最小值是S1故选C.【点睛】本题考查等差数列中前n项和最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的灵活运用.7、B【解析】

观察规律,看每一组的最后一个数与组数的关系,可知第n组最后一个数是2+3+4+…..+n+1=,然后再验证求解.【详解】观察规律,第一组最后一个数是2=2,第二组最后一个数是5=2+3,第三组最后一个数是9=2+3+4,……,依此,第n组最后一个数是2+3+4+…..+n+1=.当时,,所以所在的组数为63.故选:B【点睛】本题主要考查了数列的递推,还考查了推理论证的能力,属于中档题.8、B【解析】

由已知利用余弦定理可得,解方程可得的值.【详解】在三角形中,由余弦定理得:,化简可得:,解得或(舍).故选:B.【点睛】本题主要考查了余弦定理在解三角形中的应用,考查了方程思想,属于基础题.9、B【解析】

由圆的方程可得两圆圆心坐标和半径;根据圆心距和半径之间的关系,即可判断出两圆的位置关系.【详解】由圆的方程可知,两圆圆心分别为:和;半径分别为:,则圆心距:两圆位置关系为:相交本题正确选项:【点睛】本题考查圆与圆位置关系的判定;关键是明确两圆位置关系的判定是根据圆心距与两圆半径之间的长度关系确定.10、B【解析】

利用直线与直线平行的性质求解.【详解】∵直线与平行,解得a=2或a=﹣2.∵当a=﹣2时,两直线重合,∴a=2.故选B.【点睛】本题考查满足条件的实数值的求法,是基础题,解题时要注意两直线的位置关系的合理运用.二、填空题:本大题共6小题,每小题5分,共30分。11、;【解析】

由条件利用三角形内角和公式求得,再利用正弦定理即可求解.【详解】在中,,,,即,,故答案为:【点睛】本题考查了正弦定理解三角形,需熟记定理的内容,属于基础题.12、【解析】

先判断球心在上,再利用勾股定理得到半径,最后计算体积.【详解】三棱锥的底面是腰长为2的等腰直角三角形,侧棱长都等于为中点,为外心,连接,平面球心在上设半径为故答案为【点睛】本题考查了三棱锥外接球的体积,意在考查学生的空间想象能力和计算能力.13、5【解析】

由等差数列的前和公式,求得,再结合等差数列的性质,即可求解.【详解】由题意,根据等差数列的前和公式,可得,解得,又由等差数列的性质,可得.故答案为:.【点睛】本题主要考查了等差数列的性质,以及等差数列的前和公式的应用,其中解答中熟记等差数列的性质,以及合理应用等差数列的前和公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】试题分析:,.考点:三角形的面积公式及余弦定理的变形.点评:由三角形的面积公式,再根据,直接可求出tanC的值,从而得到C.15、【解析】

利用辅助角将函数利用两角差的正弦公式进行化简,求得函数取得最大值时的与的关系,从而求得,,可得结果.【详解】因为函数,其中,,当时,函数取得最大值,此时,∴,,∴故答案为【点睛】本题考查了两角差的正弦公式的逆用,着重考查辅助角公式的应用与正弦函数的性质,属于中档题.16、【解析】

向正方形内任投一点,所有等可能基本事件构成正方形区域,当的面积大于正方形面积四分之一的所有基本事件构成区域矩形区域,由面积比可得概率值.【详解】如图边长为1的正方形中,分别是的中点,当点在线段上时,的面积为,所以的面积大于正方形面积四分之一,此时点应在矩形内,由几何概型得:,故填.【点睛】本题考查几何概型,利用面积比求概率值,考查对几何概型概率计算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】

(1)由偶函数的定义,利用,求得的值,再由对数函数的单调性,结合题设条件,即可求解实数的范围;(2)利用换元法和对勾函数的单调性,以及二次函数的闭区间上的求法,分类讨论对称轴和区间的关系,即可求解.【详解】(1)因为,所以的定义域为,因为是偶函数,即,所以,故,所以,即方程的解为一切实数,所以,因为,且,所以原方程转化为,令,,所以所以在上是减函数,是增函数,当时,使成立的有两个,又由知,与一一对应,故当时,有两不等实根;(2)因为,所以,所以,令,则,令,设,则,因为,所以,即在上是增函数,所以,设,则.(i)当时,的最小值为,所以,解得,或4(舍去);(ii)当时,的最小值为,不合题意;(iii)当时,的最小值为,所以,解得,或(舍去).综上知,或.【点睛】本题主要考查了函数的综合应用,其中解答中涉及到函数的奇偶性,对数函数的图象与性质,以及换元法和分类讨论思想的应用,试题综合性强,属于难题,着重考查了分析问题和解答问题的能力,以及推理与运算能力.18、(1);(2);(3).【解析】

(1)计算出、的坐标,可计算出的坐标,再利用平面向量模长的坐标表示可计算出向量的模;(2)由可计算出的值;(3)由投影的定义得出向量在上的投影为可计算出结果.【详解】(1)、、,,,因此,;(2)由(1)知,,,所以;(3)由(2)知向量与的夹角的余弦为,且.所以向量在上的投影为.【点睛】本题考查平面向量的坐标运算以及平面向量夹角的坐标表示、以及向量投影的计算,解题时要熟悉平面向量坐标的运算律以及平面向量数量积、模、夹角的坐标运算,考查计算能力,属于基础题.19、(1);(2).【解析】

(1)利用两角和差的正弦公式整理可得:,再利用已知可得:(),结合已知可得:,求得:时,,问题得解.(2)利用正弦定理可得:,结合可得:,对边利用余弦定理可得:,结合已知整理得:,再利用三角形面积公式计算得解.【详解】解:(1).因为在处取得最大值,所以,,即.因为,所以,所以.因为,所以所以,因为关于的方程有解,所以的取值范围为.(2)因为,,由正弦定理,于是.又,所以.由余弦定理得:,整理得:,即,所以,所以.【点睛】本题主要考查了两角和、差的正弦公式应用,还考查了三角函数的性质及方程与函数的关系,还考查了正弦定理、余弦定理的应用及三角形面积公式,考查计算能力及转化能力,属于中档题.20、(1)见证明;(2)【解析】

(1)利用与的关系,即要注意对进行讨论,再根据等比数列的定义,证明为常数;(2)利用错位相减法对数列进行求和.【详解】解(1)当时,,所以因为①,所以当时,②,①-②得,所以,所以,所以是首项为2,公比为2的等比数列.(2)由(1)知,,所以,因为,所以,设的公差为,则,所以所以,,所以,则,以上两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论