湖南省常德市临澧一中2026届高一下数学期末质量检测试题含解析_第1页
湖南省常德市临澧一中2026届高一下数学期末质量检测试题含解析_第2页
湖南省常德市临澧一中2026届高一下数学期末质量检测试题含解析_第3页
湖南省常德市临澧一中2026届高一下数学期末质量检测试题含解析_第4页
湖南省常德市临澧一中2026届高一下数学期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省常德市临澧一中2026届高一下数学期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,满足不等式组,则的最小值为()A.-5 B.-4 C.-3 D.-22.两数与的等比中项是()A.1 B.-1 C.±1 D.3.若三个实数a,b,c成等比数列,其中a=3-5,c=3+A.2 B.-2 C.±2 D.44.函数的定义域为()A. B. C. D.5.已知等比数列{an}的前n项和为Sn,若2Sn=an+1﹣1(n∈N*),则首项a1为()A.1 B.2 C.3 D.46.设集合,集合为函数的定义域,则()A. B. C. D.7.记复数的虚部为,已知满足,则为()A. B. C.2 D.8.若两等差数列,前项和分別为,,满足,则的值为().A. B. C. D.9.函数的图象与函数的图象交点的个数为()A. B. C. D.10.函数在上零点的个数为()A.2 B.3 C.4 D.5二、填空题:本大题共6小题,每小题5分,共30分。11.已知sin+cosα=,则sin2α=__12.设为等差数列,若,则_____.13.若直线上存在点可作圆的两条切线,切点为,且,则实数的取值范围为.14.某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为_______.15.函数的最小值为____________.16.已知向量为单位向量,向量,且,则向量的夹角为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)设,直接用任意角的三角比定义证明:.(2)给出两个公式:①;②.请仅以上述两个公式为已知条件证明:.18.如图,矩形所在平面与以为直径的圆所在平面垂直,为中点,是圆周上一点,且,,.(1)求异面直线与所成角的余弦值;(2)设点是线段上的点,且满足,若直线平面,求实数的值.19.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10.(1)求的值;(2)分别求出甲、乙两组数据的方差和,并由此分析两组技工的加工水平;20.已知函数.(1)求函数在上的最小值的表达式;(2)若函数在上有且只有一个零点,求的取值范围.21.如图所示,在中,点在边上,,,,.(1)求的值;(2)求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

画出不等式组表示的平面区域,平移目标函数,找出最优解,求出的最小值.【详解】画出,满足不等式组表示的平面区域,如图所示平移目标函数知,当目标函数过点时,取得最小值,由得,即点坐标为∴的最小值为,故选A.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.2、C【解析】试题分析:设两数的等比中项为,等比中项为-1或1考点:等比中项3、C【解析】

由实数a,b,c成等比数列,得b2【详解】由实数a,b,c成等比数列,得b2所以b=±2.故选C.【点睛】本题主要考查了等比数列的基本性质,属于基础题.4、A【解析】

根据对数函数的定义域直接求解即可.【详解】由题知函数,所以,所以函数的定义域是.故选:A.【点睛】本题考查了对数函数的定义域的求解,属于基础题.5、A【解析】

等比数列的公比设为,分别令,结合等比数列的定义和通项公式,解方程可得所求首项.【详解】等比数列的公比设为,由,令,可得,,两式相减可得,即,又所以.故选:A.【点睛】本题考查数列的递推式的运用,等比数列的定义和通项公式,考查方程思想和运算能力,属于基础题.6、B【解析】

解不等式化简集合的表示,求出函数的定义域,表示成集合的形式,运用集合的并集运算法则,结合数轴求出.【详解】因为,所以.又因为函数的定义域为,所以.因此,故本题选B.【点睛】本题考查了集合的并集运算,正确求出对数型函数的定义域,运用数轴是解题的关键.7、A【解析】

根据复数除法运算求得,从而可得虚部.【详解】由得:本题正确选项:【点睛】本题考查复数虚部的求解问题,关键是通过复数除法运算得到的形式.8、B【解析】解:因为两等差数列、前项和分别为、,满足,故,选B9、D【解析】

通过对两函数的表达式进行化简,变成我们熟悉的函数模型,比如反比例、一次函数、指数、对数及三角函数,看图直接判断【详解】由,作图如下:共6个交点,所以答案选择D【点睛】函数图象交点个数问题与函数零点、方程根可以作相应等价,用函数零点及方程根本题不现实,所以我们更多去考虑分别作图象,直接看交点个数.10、D【解析】

在同一直角坐标系下,分别作出与的图象,结合函数图象即可求解.【详解】解:由题意知:函数在上零点个数,等价于与的图象在同一直角坐标系下交点的个数,作图如下:由图可知:函数在上有个零点.故选:D【点睛】本题考查函数的零点的知识,考查数形结合思想,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】∵,∴即,则.故答案为:.12、【解析】

根据等差数列的性质:在等差数列中若则即可【详解】故答案为:【点睛】本题主要考查的等差数列的性质:若则,这一性质是常考的知识点,属于基础题。13、【解析】试题分析:若,则,直线上存在点可作和的两条切线等价于直线与圆有公共点,由圆心到直线的距离公式可得,解之可得.考点:点到直线的距离公式及直线与圆的位置关系的运用.【方法点晴】本题主要考查了点到直线的距离公式及直线与圆的位置关系的运用,涉及到圆心到直线的距离公式和不等式的求解,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及学生的推理与运算能力,本题的解答中直线上存在点可作和的两条切线等价于直线与圆有公共点是解答的关键.14、2【解析】

根据抽取6个城市作为样本,得到每个个体被抽到的概率,用概率乘以丙组的数目,即可得到结果.【详解】城市有甲、乙、丙三组,对应的城市数分别为4,12,8.

本市共有城市数24,用分层抽样的方法从中抽取一个容量为6的样本,

每个个体被抽到的概率是,丙组中对应的城市数8,则丙组中应抽取的城市数为,故答案为2.【点睛】本题主要考查分层抽样的应用以及古典概型概率公式的应用,属于基础题.分层抽样适合总体中个体差异明显,层次清晰的抽样,其主要性质是,每个层次,抽取的比例相同.15、【解析】

将函数构造成的形式,用换元法令,在定义域上根据新函数的单调性求函数最小值,之后可得原函数最小值。【详解】由题得,,令,则函数在递增,可得的最小值为,则的最小值为.故答案为:【点睛】本题考查了换元法,以及函数的单调性,是基础题。16、【解析】因为,所以,所以,所以,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】

(1)直接利用任意角的三角函数的定义证得.(2)由已知条件利用诱导公式,证明.【详解】解:(1)将角的顶点置于平面直角坐标系的原点,始边与轴的正半轴重合,设角终边一点(非原点),其坐标为.∵,∴,.(2)由于,将换成后,就有即,.【点睛】本题主要考查任意角的三角函数的定义、诱导公式,属于基础题.18、(1);(2)1【解析】

(1)取中点,连接,即为所求角。在中,易得MC,NC的长,MN可在直角三角形中求得。再用余弦定理易求得夹角。(2)连接,连接和交于点,连接,易得,所以为的中位线,所以为中点,所以的值为1。【详解】(1)取中点,连接因为为矩形,分别为中点,所以所以异面直线与所成角就是与所成的锐角或直角因为平面平面,平面平面矩形中,,平面所以平面又平面,所以中,,所以又是圆周上点,且,所以中,,由余弦定理可求得所以异面直线与所成角的余弦值为(2)连接,连接和交于点,连接因为直线平面,直线平面,平面平面所以矩形的对角线交点为中点所以为的中位线,所以为中点又,所以的值为1【点睛】(1)异面直线所成夹角一般是要平移到一个平面。(2)通过几何关系确定未知点的位置,再求解线段长即可。19、(1);(2),乙组加工水平高.【解析】

(1)根据甲、乙两组数据的平均数都是并结合平均数公式可求出、的值;(2)利用方差公式求出甲、乙两组数据的方差,根据方差大小来对甲、乙两组技工的加工水平高低作判断.【详解】(1)由于甲组数据的平均数为,即,解得,同理,,解得;(2)甲组的个数据分别为:、、、、,由方差公式得,乙组的个数据分别为:、、、、,由方差公式得,,因此,乙组技工的技工的加工水平高.【点睛】本题考查茎叶图与平均数、方差的计算,从茎叶图中读取数据时,要注意茎的部分数字为高位,叶子部分的数字为低位,另外,这些数据一般要按照由小到大或者由大到小的顺序排列.20、(1);(2).【解析】

(1)求出函数的对称轴方程,对实数分、、三种情况讨论,分析函数在区间上的单调性,进而可得出函数在区间上的最小值的表达式;(2)对函数分情况讨论:(i)方程在区间上有两个相等的实根;(ii)①方程在区间只有一根;(②;③.可得出关于实数的等式或不等式,即可解得实数的取值范围.【详解】(1),其对称轴为,当,即时,函数在区间上单调递减,;当,即时,函数在区间上单调递减,在区间上单调递增,;当时,即当时,函数在区间上单调递增,.综上所述:;(2)(i)若方程在上有两个相等的实数根,则,此时无解;(ii)若方程有两个不相等的实数根.①当只有一根在内时,,即,得;②当时,,方程化为,其根为,,满足题意;③当时,,方程化为,其根为,,满足题意.综上所述,的取值范围是.【点睛】本题考查二次函数在定区间上最值的计算,同时也考查了利用二次函数在区间上零点个数求参数,考查分类讨论思想的应用,属于中等题.21、(1)(2)【解析】

(1)设,分别在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论