山东省临沂市兰陵县东苑高级中学2026届高一数学第二学期期末综合测试试题含解析_第1页
山东省临沂市兰陵县东苑高级中学2026届高一数学第二学期期末综合测试试题含解析_第2页
山东省临沂市兰陵县东苑高级中学2026届高一数学第二学期期末综合测试试题含解析_第3页
山东省临沂市兰陵县东苑高级中学2026届高一数学第二学期期末综合测试试题含解析_第4页
山东省临沂市兰陵县东苑高级中学2026届高一数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省临沂市兰陵县东苑高级中学2026届高一数学第二学期期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.三棱锥中,互相垂直,,是线段上一动点,若直线与平面所成角的正切的最大值是,则三棱锥的外接球的表面积是()A. B. C. D.2.一个长方体共一顶点的三条棱长分别是,这个长方体它的八个顶点都在同一个球面上,这个球的表面积是()A.12π B.18π C.36π D.6π3.表示不超过的最大整数,设函数,则函数的值域为()A. B. C. D.4.函数的单调减区间为A.B.C.D.5.如图,B是AC上一点,分别以AB,BC,AC为直径作半圆,从B作BD⊥AC,与半圆相交于D,AC=6,BD=22A.29 B.13 C.46.下列说法正确的是()A.小于的角是锐角 B.钝角是第二象限的角C.第二象限的角大于第一象限的角 D.若角与角的终边相同,则7.若复数(是虚数单位)是纯虚数,则实数的值为()A. B. C. D.8.已知集合,集合为整数集,则()A. B. C. D.9.已知数列{an}前n项和为Sn,且满足①数列{an}必为等比数列;②p=1时,S5=3132;③正确的个数有()A.1 B.2 C.3 D.410.一个等腰三角形绕着底边上的高所在的直线旋转180度所形成的几何体是()A.两个共底面的圆锥 B.半圆锥 C.圆锥 D.圆柱二、填空题:本大题共6小题,每小题5分,共30分。11.方程在区间上的解为___________.12.用数学归纳法证明时,从“到”,左边需增乘的代数式是___________.13.一个三角形的三条边成等比数列,那么,公比q的取值范围是__________.14.函数的递增区间是__________.15.过点作圆的两条切线,切点分别为,则=.16.已知,则的值为_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列满足,,其前项和为.(1)求的通项公式及;(2)令,求数列的前项和,并求的值.18.如图,在四棱锥中,底面为正方形,平面,,与交于点,,分别为,的中点.(Ⅰ)求证:平面平面;(Ⅱ)求证:∥平面;(Ⅲ)求证:平面.19.某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在,,,,,(单位:克)中,经统计得频率分布直方图如图所示.(1)经计算估计这组数据的中位数;(2)现按分层抽样从质量为,的芒果中随机抽取6个,再从这6个中随机抽取3个,求这3个芒果中恰有1个在内的概率.(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案:A:所有芒果以10元/千克收购;B:对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购,通过计算确定种植园选择哪种方案获利更多?20.已知向量,满足:=4,=3,(Ⅰ)求·的值;(Ⅱ)求的值.21.在平面直角坐标系中,以轴为始边,作两个角,它们终边分别经过点和,其中,,且.(1)求的值;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】是线段上一动点,连接,∵互相垂直,∴就是直线与平面所成角,当最短时,即时直线与平面所成角的正切的最大.此时,,在直角△中,.三棱锥扩充为长方体,则长方体的对角线长为,∴三棱锥的外接球的半径为,∴三棱锥的外接球的表面积为.选B.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.2、A【解析】

先求长方体的对角线的长度,就是球的直径,然后求出它的表面积.【详解】长方体的体对角线的长是,所以球的半径是:,所以该球的表面积是,故选A.【点睛】该题考查的是有关长方体的外接球的表面积问题,在解题的过程中,首先要明确长方体的外接球的球心应在长方体的中心处,即长方体的体对角线是其外接球的直径,从而求得结果.3、D【解析】

由已知可证是奇函数,是互为相反数,对是否为正数分类讨论,即可求解.【详解】的定义域为,,,是奇函数,设,若是整数,则,若不是整数,则.的值域是.故选:D.【点睛】本题考查函数性质的应用,考查对新函数定义的理解,考查分类讨论思想,属于中档题.4、A【解析】

根据正弦函数的单调递减区间,列出不等式求解,即可得出结果.【详解】的单调减区间为,,解得函数的单调减区间为.故选A.【点睛】本题主要考查三角函数的单调性,熟记正弦函数的单调区间即可,属于常考题型.5、C【解析】

求得阴影部分的面积和最大的半圆的面积,再根据面积型几何概型的概率计算公式求解.【详解】连接AD,CD,可知△ACD是直角三角形,又BD⊥AC,所以BDAB=x(0<x<6),则有8=x(6-x),得x=2,所以AB=2, BC=4,由此可得图中阴影部分的面积等于π×3【点睛】本题考查了与面积有关的几何概型的概率的求法,当试验结果所构成的区域可用面积表示,用面积比计算概率.涉及了初中学习的射影定理,也可通过证明相似,求解各线段的长.6、B【解析】

可通过举例的方式验证选项的对错.【详解】A:负角不是锐角,比如“”的角,故错误;B:钝角范围是“”,是第二象限的角,故正确;C:第二象限角取“”,第一象限角取“”,故错误;D:当角与角的终边相同,则.故选B.【点睛】本题考查任意角的概念,难度较易.7、C【解析】,且是纯虚数,,故选C.8、A【解析】试题分析:,选A.【考点定位】集合的基本运算.9、C【解析】

由数列的递推式和等比数列的定义可得数列{an}为首项为p【详解】Sn+an=2pn⩾2时,Sn-1+a相减可得2an-an-1=0,即有数列由①可得p=1时,S5|a|a5|+|由①可得am·a可得p=1故选:C.【点睛】本题考查数列的递推式的运用,以及等比数列的定义和通项公式、求和公式的运用,考查化简整理的运算能力,属于中档题.10、C【解析】

根据旋转体的知识,结合等腰三角形的几何特征,得出正确的选项.【详解】由于等腰三角形三线合一,故等腰三角形绕着底边上的高所在的直线旋转180度所形成的几何体是圆锥.故选C.【点睛】本小题主要考查旋转体的知识,考查等腰三角形的几何特征,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:化简得:,所以,解得或(舍去),又,所以.【考点】二倍角公式及三角函数求值【名师点睛】已知三角函数值求角,基本思路是通过化简,得到角的某种三角函数值,结合角的范围求解.本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.12、.【解析】

从到时左边需增乘的代数式是,化简即可得出.【详解】假设时命题成立,则,当时,从到时左边需增乘的代数式是.故答案为:.【点睛】本题考查数学归纳法的应用,考查推理能力与计算能力,属于中档题.13、【解析】

设三边按递增顺序排列为,其中.则,即.解得.由q≥1知q的取值范围是1≤q<.设三边按递减顺序排列为,其中.则,即.解得.综上所述,.14、;【解析】

先利用辅助角公式对函数化简,由可求解.【详解】函数,由,可得,所以函数的单调增区间为.故答案为:【点睛】本题考查了辅助角公式、正弦函数的图像与性质,需熟记公式与性质,属于基础题.15、【解析】

如图,连接,在直角三角形中,所以,,,故.考点:1.直线与圆的位置关系;2.平面向量的数量积.16、【解析】

利用和差化积公式将两式化简,然后两式相除得到的值,再利用二倍角公式即可求出.【详解】由得,,,两式相除得,,则.【点睛】本题主要考查和差化积公式以及二倍角公式的应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2),【解析】

(1)利用等差数列的通项公式及前n项的和公式可得答案;(2)利用“裂项求和”法可得答案.【详解】解:(1)设等差数列的公差为,由,得,又,解得.所以.所以.(2)由,得.设的前项和为,则.【点睛】本题主要考查等差数列的通项公式及前n项的和,及数列求和的“裂项相消法”,属于中档题.18、(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解析】

(I)通过证明平面来证得平面平面.(II)取中点,连接,通过证明四边形为平行四边形,证得,由此证得∥平面.(III)通过证明平面证得,通过计算证明证得,由此证得平面.【详解】证明:(Ⅰ)因为平面,所以.因为,,所以平面.因为平面,所以平面平面.(Ⅱ)取中点,连结,因为为的中点所以,且.因为为的中点,底面为正方形,所以,且.所以,且.所以四边形为平行四边形.所以.因为平面且平面,所以平面.(Ⅲ)在正方形中,,因为平面,所以.因为,所以平面.所以.在△中,设交于.因为,且分别为的中点,所以.所以.设,由已知,所以.所以.所以.所以,且为公共角,所以△∽△.所以.所以.因为,所以平面.【点睛】本小题主要考查线面垂直、面面垂直的证明,考查线面平行的证明,考查空间想象能力和逻辑推理能力,属于中档题.19、(1)中位数为268.75;(2);(3)选B方案【解析】

(1)根据中位数左右两边的频率均为0.5求解即可.(2)利用枚举法求出所以可能的情况,再利用古典概型方法求解概率即可.(3)分别计算两种方案的获利再比较大小即可.【详解】(1)由频率分布直方图可得,前3组的频率和为,前4组的频率和为,所以中位数在内,设中位数为,则有,解得.故中位数为268.75.(2)设质量在内的4个芒果分别为,,,,质量在内的2个芒果分别为,.从这6个芒果中选出3个的情况共有,,,,,,,,,,,,,,,,,,,,共计20种,其中恰有一个在内的情况有,,,,,,,,,,,,共计12种,因此概率.(3)方案A:元.方案B:由题意得低于250克:元;高于或等于250克元.故总计元,由于,故B方案获利更多,应选B方案.【点睛】本题主要考查了频率分布直方图的用法以及古典概型的方法,同时也考查了根据样本估计总体的方法等.属于中等题型.20、(Ⅰ)=2(Ⅱ)【解析】

(I)计算,结合两向量的模可得;(II

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论