青岛第二中学2026届高一下数学期末质量跟踪监视模拟试题含解析_第1页
青岛第二中学2026届高一下数学期末质量跟踪监视模拟试题含解析_第2页
青岛第二中学2026届高一下数学期末质量跟踪监视模拟试题含解析_第3页
青岛第二中学2026届高一下数学期末质量跟踪监视模拟试题含解析_第4页
青岛第二中学2026届高一下数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青岛第二中学2026届高一下数学期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过点的圆的切线方程是()A. B.或C.或 D.或2.已知的模为1,且在方向上的投影为,则与的夹角为()A.30° B.60° C.120° D.150°3.已知,则下列不等式一定成立的是()A. B. C. D.4.我国古代数学名著九章算术记载:“刍甍者,下有袤有广,而上有袤无丈刍,草也;甍,屋盖也”翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱刍甍字面意思为茅草屋顶”如图,为一刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形则它的体积为A. B.160 C. D.645.在中,角的对边分别是,已知,则()A. B. C. D.或6.若平面平面,直线,直线,则关于直线、的位置关系的说法正确的是()A. B.、异面 C. D.、没有公共点7.设是虚数单位,复数为纯虚数,则实数的值为()A. B. C. D.8.在三棱锥中,已知所有棱长均为,是的中点,则异面直线与所成角的余弦值为()A. B. C. D.9.在数列中,已知,,则该数列前2019项的和()A.2019 B.2020 C.4038 D.404010.下列命题中正确的是()A.相等的角终边必相同 B.终边相同的角必相等C.终边落在第一象限的角必是锐角 D.不相等的角其终边必不相同二、填空题:本大题共6小题,每小题5分,共30分。11.若数列满足(,为常数),则称数列为“调和数列”,已知正项数列为“调和数列”,且,则的最大值是__________.12.一个圆锥的侧面积为,底面积为,则该圆锥的体积为________.13.已知中,,且,则面积的最大值为__________.14.两平行直线与之间的距离为_______.15.数列的通项,前项和为,则____________.16.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某中学高二年级的甲、乙两个班中,需根据某次数学预赛成绩选出某班的5名学生参加数学竞赛决赛,已知这次预赛他们取得的成绩的茎叶图如图所示,其中甲班5名学生成绩的平均分是83,乙班5名学生成绩的中位数是1.(1)求出x,y的值,且分别求甲、乙两个班中5名学生成绩的方差、,并根据结果,你认为应该选派哪一个班的学生参加决赛?(2)从成绩在85分及以上的学生中随机抽取2名.求至少有1名来自甲班的概率.18.同时抛掷两枚骰子,并记下二者向上的点数,求:二者点数相同的概率;两数之积为奇数的概率;二者的数字之和不超过5的概率.19.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED为矩形,平面BFED⊥平面ABCD,BF=1.(1)求证:AD⊥平面BFED;(2)点P在线段EF上运动,设平面PAB与平面ADE所成锐二面角为θ,试求θ的最小值.20.已知,.(1)求的值;(2)求的值.21.已知函数,且,.(1)求该函数的最小正周期及对称中心坐标;(2)若方程的根为,且,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

先由题意得到圆的圆心坐标,与半径,设所求直线方程为,根据直线与圆相切,结合点到直线距离公式,即可求出结果.【详解】因为圆的圆心为,半径为1,由题意,易知所求切线斜率存在,设过点与圆相切的直线方程为,即,所以有,整理得,解得,或;因此,所求直线方程分别为:或,整理得或.故选D【点睛】本题主要考查求过圆外一点的切线方程,根据直线与圆相切,结合点到直线距离公式即可求解,属于常考题型.2、A【解析】

根据投影公式,直接得到结果.【详解】,.故选A.【点睛】本题考查了投影公式,属于简单题型.3、C【解析】试题分析:若,那么,A错;,B错;是单调递减函数当时,所以,C.正确;是减函数,所以,故选C.考点:不等式4、A【解析】

分析:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据可得其体积.详解:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据,求出棱锥与棱柱的体积相加即可,,故选A.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.5、B【解析】

由已知知,所以B<A=,由正弦定理得,==,所以,故选B考点:正弦定理6、D【解析】

根据条件知:关于直线、的位置关系异面或者平行,故没有公共点.【详解】若平面平面,直线,直线,则关于直线、的位置关系是异面或者平行,所以、没有公共点.故答案选D【点睛】本题考查了直线,平面的位置关系,意在考查学生的空间想象能力.7、A【解析】,,,故选A.8、A【解析】

取的中点,连接、,于是得到异面直线与所成的角为,然后计算出的三条边长,并利用余弦定理计算出,即可得出答案.【详解】如下图所示,取的中点,连接、,由于、分别为、的中点,则,且,所以,异面直线与所成的角为或其补角,三棱锥是边长为的正四面体,则、均是边长为的等边三角形,为的中点,则,且,同理可得,在中,由余弦定理得,因此,异面直线与所成角的余弦值为,故选A.【点睛】本题考查异面直线所成角的计算,利用平移法求异面直线所成角的基本步骤如下:(1)一作:平移直线,找出异面直线所成的角;(2)二证:对异面直线所成的角进行说明;(3)三计算:选择合适的三角形,并计算出三角形的边长,利用余弦定理计算所求的角.9、A【解析】

根据条件判断出为等差数列,利用等差数列的性质得到和之间的关系,得到答案.【详解】为等差数列【点睛】本题考查等差中项,等差数列的基本性质,属于简单题.10、A【解析】

根据终边相同的角的的概念可得正确的选项.【详解】终边相同的角满足,故B、D错误,终边落在第一象限的角可能是负角,故C错误,相等的角的终边必定相同,故A正确.故选:A.【点睛】本题考查终边相同的角,注意终边相同时,有,本题属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】因为数列是“调和数列”,所以,即数列是等差数列,所以,,所以,,当且仅当时等号成立,因此的最大值为1.点睛:本题考查创新意识,关键是对新定义的理解与转化,由“调和数列”的定义及已知是“调和数列”,得数列是等差数列,从而利用等差数列的性质可化简已知数列的和,结合基本不等式求得最值.本题难度不大,但考查的知识较多,要熟练掌握各方面的知识与方法,才能正确求解.12、【解析】

设圆锥的底面半径为,母线长为,由圆锥的侧面积、圆面积公式列出方程组求解,代入圆锥的体积公式求解.【详解】设圆锥的底面半径为,母线长为,其侧面积为,底面积为,则,解得,,∴高===,∴==.故答案为:.【点睛】本题考查圆锥的体积的求法,考查圆锥的侧面积、底面积、体积公式等基础知识,考查运算求解能力,属于基础题.13、【解析】

先利用正弦定理求出c=2,分析得到当点在的垂直平分线上时,边上的高最大,的面积最大,利用余弦定理求出,最后求面积的最大值.【详解】由可得,由正弦定理,得,故,当点在的垂直平分线上时,边上的高最大,的面积最大,此时.由余弦定理知,,即,故面积的最大值为.故答案为【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平,属于中档题.14、【解析】

先根据两直线平行求出,再根据平行直线间的距离公式即可求出.【详解】因为直线的斜率为,所以直线的斜率存在,,即,解得或.当时,,即,故两平行直线的距离为.当时,,,两直线重合,不符合题意,应舍去.故答案为:.【点睛】本题主要考查平行直线间的距离公式的应用,以及根据两直线平行求参数,属于基础题.15、7【解析】

根据数列的通项公式,求得数列的周期为4,利用规律计算,即可求解.【详解】由题意,数列的通项,可得,,得到数列是以4项为周期的形式,所以=.故答案为:7.【点睛】本题主要考查了数列的求和问题,其中解答中根据数列的通项公式求得数列的周期,以及各项的变化规律是解答的关键,属于基础题,着重考查了.16、.【解析】

根据棱锥的结构特点,确定所求的圆柱的高和底面半径.【详解】由题意四棱锥的底面是边长为的正方形,侧棱长均为,借助勾股定理,可知四棱锥的高为,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为,一个底面的圆心为四棱锥底面的中心,故圆柱的高为,故圆柱的体积为.【点睛】本题主要考查了圆柱与四棱锥的组合,考查了空间想象力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(3)甲班参加;(4).【解析】

试题分析:(3)由题意知求出x=5,y=4.从而求出乙班学生的平均数为83,分别求出S34和S44,根据甲、乙两班的平均数相等,甲班的方差小,得到应该选派甲班的学生参加决赛.(4)成绩在85分及以上的学生一共有5名,其中甲班有4名,乙班有3名,由此能求出随机抽取4名,至少有3名来自甲班的概率.试题解析:(3)甲班的平均分为,易知.;又乙班的平均分为,∴;∵,,说明甲班同学成绩更加稳定,故应选甲班参加.(4)分及以上甲班有人,设为;乙班有人,设为,从这人中抽取人的选法有:,共种,其中甲班至少有名学生的选法有种,则甲班至少有名学生被抽到的概率为.考点:3.古典概型及其概率计算公式;4.茎叶图.18、(1)(2)(3)【解析】

把两个骰子分别记为红色和黑色,则问题中含有基本事件个数,记事件A表示“二者点数相同”,利用列举法求出事件A中包含6个基本事件,由此能求出二者点数相同的概率.记事件B表示“两数之积为奇数”,利用列举法求出事件B中含有9个基本事件,由此能求出两数之积为奇数的概率.记事件C表示“二者的数字之和不超过5”,利用列举法求出事件C中包含的基本事件有10个,由此能求出二者的数字之和不超过5的概率.【详解】解:把两个骰子分别记为红色和黑色,则问题中含有基本事件个数,记事件A表示“二者点数相同”,则事件A中包含6个基本事件,分别为:,,,,,,二者点数相同的概率.记事件B表示“两数之积为奇数”,则事件B中含有9个基本事件,分别为:,,,,,,,,,两数之积为奇数的概率.记事件C表示“二者的数字之和不超过5”,由事件C中包含的基本事件有10个,分别为:,,,,,,,,,,二者的数字之和不超过5的概率.【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.19、(1)证明见解析(2)θ最小值为60°【解析】

(1)在梯形ABCD中,利用勾股定理,得到AD⊥BD,再结合面面垂直的判定,证得DE⊥平面ABCD,即可证得AD⊥平面BFED;(2)以D为原点,直线DA,DB,DE分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,求得平面PAB与平面ADE法向量,利用向量的夹角公式,即可求解。【详解】(1)证明:在梯形ABCD中,∵AB∥CD,AD=DC=CB=1,∠BCD=120°,∴AB=2.∴BD2=AB2+AD2-2AB·AD·cos60°=3.∴AB2=AD2+BD2,∴AD⊥BD.∵平面BFED⊥平面ABCD,平面BFED∩平面ABCD=BD,DE⊂平面BFED,DE⊥DB,∴DE⊥平面ABCD,∴DE⊥AD,又DE∩BD=D,∴AD⊥平面BFED.(1)由(1)知,直线AD,BD,ED两两垂直,故以D为原点,直线DA,DB,DE分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,令EP=λ(0≤λ≤),则D(0,0,0),A(1,0,0),B(0,,0),P(0,λ,1),所以=(-1,,0),=(0,λ-,1).设n1=(x,y,z)为平面PAB的法向量,由得,取y=1,则n1=(,1,-λ).因为n2=(0,1,0)是平面ADE的一个法向量,所以cosθ===.因为0≤λ≤,所以当λ=时,cosθ有最大值,所以θ的最小值为60°.【点睛】本题考查了线面垂直关系的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20、(1);(2).【解析】

(1)由,算得,接着利用二倍角公式,即可得到本题答案;(2)利用和角公式展开,再代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论