2026届江苏省淮安市第一山中学高一数学第二学期期末教学质量检测模拟试题含解析_第1页
2026届江苏省淮安市第一山中学高一数学第二学期期末教学质量检测模拟试题含解析_第2页
2026届江苏省淮安市第一山中学高一数学第二学期期末教学质量检测模拟试题含解析_第3页
2026届江苏省淮安市第一山中学高一数学第二学期期末教学质量检测模拟试题含解析_第4页
2026届江苏省淮安市第一山中学高一数学第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江苏省淮安市第一山中学高一数学第二学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.化简的结果是()A. B. C. D.2.在中,,,,则的面积是()A. B. C.或 D.或3.在中,若,,,则()A. B. C. D.4.下列函数中,既是偶函数,又在上递增的函数的个数是().①;②;③;④向右平移后得到的函数.A. B. C. D.5.已知,且,则实数的值为()A.2 B. C.3 D.6.对数列,若区间满足下列条件:①;②,则称为区间套.下列选项中,可以构成区间套的数列是()A.;B.C.D.7.已知在中,,则的形状是A.锐角三角形 B.钝角三角形C.等腰三角形 D.直角三角形8.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥为鳖臑,平面,三棱锥的四个顶点都在球的球面上,则球的表面积为()A. B. C. D.9.设数列满足,且,则数列中的最大项为()A. B. C. D.10.在中,若,则的形状是()A.等边三角形 B.等腰三角形C.直角三角形 D.等腰三角形或直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的值为.12.已知三点、、共线,则a=_______.13.点与点关于直线对称,则直线的方程为______.14.在等差数列中,,当最大时,的值是________.15.在行列式中,元素的代数余子式的值是________.16.一组数据2,4,5,,7,9的众数是2,则这组数据的中位数是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,与的夹角是(1)计算:①,②;(2)当为何值时,与垂直?18.已知向量,,其中为坐标原点.(1)若,求向量与的夹角;(2)若对任意实数都成立,求实数的取值范围.19.设有关于的一元二次方程.(Ⅰ)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.20.在△ABC中,a,b,c分别是角A,B,C的对边,已知3(b2+c2)=3a2+2bc.(1)若sinB=cosC,求tanC的大小;(2)若a=2,△ABC的面积S=,且b>c,求b,c.21.已知.(1)当时,求数列前n项和;(用和n表示);(2)求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据平面向量加法及数乘的几何意义,即可求解,得到答案.【详解】根据平面向量加法及数乘的几何意义,可得,故选A.【点睛】本题主要考查了平面向量的加法法则的应用,其中解答中熟记平面向量的加法法则是解答的关键,着重考查了推理与运算能力,属于基础题.2、C【解析】

先根据正弦定理求出角,从而求出角,再根据三角形的面积公式进行求解即可.【详解】解:由,,,根据正弦定理得:,为三角形的内角,或,或在中,由,,或则面积或.故选C.【点睛】本题主要考查了正弦定理,三角形的面积公式以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键,属于中档题.3、D【解析】

由正弦定理构造方程即可求得结果.【详解】由正弦定理得:本题正确选项:【点睛】本题考查正弦定理解三角形的问题,属于基础题.4、B【解析】

将①②③④中的函数解析式化简,分析各函数的奇偶性及其在区间上的单调性,可得出结论.【详解】对于①中的函数,该函数为偶函数,当时,,该函数在区间上不单调;对于②中的函数,该函数为偶函数,且在区间上单调递减;对于③中的函数,该函数为偶函数,且在区间上单调递增;对于④,将函数向右平移后得到的函数为,该函数为奇函数,且当时,,则函数在区间上不单调.故选:B.【点睛】本题考查三角函数单调性与奇偶性的判断,同时也考查了三角函数的相位变换,熟悉正弦、余弦和正切函数的基本性质是判断的关键,考查推理能力,属于中等题.5、D【解析】

根据二角和与差的正弦公式化简,,再切化弦,即可求解.【详解】由题意又解得故选:【点睛】本题考查两角和与差的正弦公式,属于基础题.6、C【解析】由题意,得为递增数列,为递减数列,且当时,;而与与均为递减数列,所以排除A,B,D,故选C.考点:新定义题目.7、D【解析】

利用正弦定理可将已知中的等号两边的“边”转化为它所对角的正弦,再利用余弦定理化简即得该三角形的形状.【详解】根据正弦定理,原式可变形为:所以整理得.故选.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.8、C【解析】由题意,PA⊥面ABC,则为直角三角形,PA=3,AB=4,所以PB=5,又△ABC是直角三角形,所以∠ABC=90°,AB=4,AC=5所以BC=3,因为为直角三角形,经分析只能,故,三棱锥的外接球的圆心为PC的中点,所以则球的表面积为.故选C.9、A【解析】

利用累加法求得的通项公式,再根据的单调性求得最大项.【详解】因为故故则,其最大项是的最小项的倒数,又,当且仅当或时,取得最小值7.故得最大项为.故选:A.【点睛】本题考查由累加法求数列的通项公式,以及数列的单调性,属综合基础题.10、D【解析】

,两种情况对应求解.【详解】所以或故答案选D【点睛】本题考查了诱导公式,漏解是容易发生的错误.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用商数关系式化简即可.【详解】,故填.【点睛】利用同角的三角函数的基本关系式可以化简一些代数式,常见的方法有:(1)弦切互化法:即把含有正弦和余弦的代数式化成关于正切的代数式,也可以把含有正切的代数式化为关于余弦和正弦的代数式;(2)“1”的代换法:有时可以把看成.12、【解析】

由三点、、共线,则有,再利用向量共线的坐标运算即可得解.【详解】解:由、、,则,,又三点、、共线,则,则,解得:,故答案为:.【点睛】本题考查了向量共线的坐标运算,属基础题.13、【解析】

根据和关于直线对称可得直线和直线垂直且中点在直线上,从而可求得直线的斜率,利用点斜式可得直线方程.【详解】由,得:且中点坐标为和关于直线对称且在上的方程为:,即:本题正确结果:【点睛】本题考查根据两点关于直线对称求解直线方程的问题,关键是明确两点关于直线对称则连线与对称轴垂直,且中点必在对称轴上,属于常考题型.14、6或7【解析】

利用等差数列的前项和公式,由,可以得到和公差的关系,利用二次函数的性质可以求出最大时,的值.【详解】设等差数列的公差为,,,所以,因为,,所以当或时,有最大值,因此当的值是6或7.【点睛】本题考查了等差数列的前项和公式,考查了等差数列的前项和最大值问题,运用二次函数的性质是解题的关键.15、【解析】

根据余子式的定义,要求的代数余子式的值,这个元素在三阶行列式中的位置是第一行第二列,那么化去第一行第二列得到的代数余子式,解出即可.【详解】解:在行列式中,元素在第一行第二列,那么化去第一行第二列得到的代数余子式为:解这个余子式的值为,故元素的代数余子式的值是.故答案为:【点睛】考查学生会求行列式中元素的代数余子式,行列式的计算方法,属于基础题.16、【解析】

根据众数的定义求出的值,再根据中位数的定义进行求解即可.【详解】因为一组数据2,4,5,,7,9的众数是2,所以,这一组数据从小到大排列为:2,2,4,5,7,9,因此这一组数据的中位数为:.故答案为:【点睛】本题考查了众数和中位数的定义,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)①;②;(2).【解析】

利用数量积的定义求解出的值;(1)将所求模长平方,从而得到关于模长和数量积的式子,代入求得模长的平方,再开平方得到结果;(2)向量互相垂直得到数量积等于零,由此建立方程,解方程求得结果.【详解】由已知得:(1)①②(2)若与垂直,则即:,解得:【点睛】本题考查利用数量积求解向量的模长、利用数量积与向量垂直的关系求解参数的问题.求解向量的模长关键是能够通过平方运算将问题转化为模长和数量积运算的形式,从而使问题得以求解.18、(1)或;(2)或.【解析】

(1)按向量数量积的定义先求夹角余弦,再求得夹角;(2)不等式化为恒成立,令取1和-1代入解不等式组即可得.【详解】(1)由题意,,记向量与的夹角为,又,则,当时,,,当时,,.(2),由得,∵,∴,∴,解得或.【点睛】本题考查向量模与夹角,考查不等式恒成立问题,不等式中把作为一个整体,它是关于的一次不等式,因此要使它恒成立,只要取1和-1时均成立即可.19、(Ⅰ)(Ⅱ)【解析】

(1)本题是一个古典概型,可知基本事件共12个,方程当时有实根的充要条件为,满足条件的事件中包含9个基本事件,由古典概型公式得到事件发生的概率.(2)本题是一个几何概型,试验的全部约束所构成的区域为,.构成事件的区域为,,.根据几何概型公式得到结果.【详解】解:设事件为“方程有实数根”.当时,方程有实数根的充要条件为.(Ⅰ)基本事件共12个:.其中第一个数表示的取值,第二个数表示的取值.事件中包含9个基本事件,事件发生的概率为.(Ⅱ)实验的全部结果所构成的区域为.构成事件的区域为,所求的概率为【点睛】本题考查几何概型和古典概型,放在一起的目的是把两种概型加以比较,属于基础题.20、(1);(2).【解析】试题分析:(1)根据已知条件及余弦定理可求得的值,再由同角三角函数基本关系式可求得的值.因为,所以,由两角和的正弦公式可将其化简变形,可求得与的关系式,从而可得.(2)根据余弦定理和三角形面积均可得的关系式.从而可解得的值.试题解析:,,,.(1),,,,.(2),,,①,∴由余弦定理可得,,②,∴联立①②

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论