药物代谢动力学_第1页
药物代谢动力学_第2页
药物代谢动力学_第3页
药物代谢动力学_第4页
药物代谢动力学_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、药物代谢动力学完整版第二章 药物体内转运肾脏排泄药物及其代谢物涉及三个过程:肾小球的滤过、肾小管主动分泌、肾小管重吸收。一、药物跨膜转运的方式及特点1. 被动扩散特点:顺浓度梯度转运无选择性,与药物的油/水分配系数有关无饱和现象无竞争性抑制作用不需要能量2. 孔道转运特点:主要为水和电解质的转运转运速率与所处组织及膜的性质有关3. 特殊转运 包括:主动转运、载体转运、受体介导的转运特点:逆浓度梯度转运常需要能量有饱和现象有竞争性抑制作用有选择性4. 其他转运方式包括:易化扩散 类似于主动转运,但不需要能量 胞饮 主要转运大分子化合物二、影响药物吸收的因素有哪些药物和剂型的影响胃排空时间的影响首

2、过效应肠上皮的外排疾病药物相互作用三、研究药物吸收的方法有哪些,各有何特点?1. 整体动物实验法能够很好地反映给药后药物的吸收过程,是目前最常用的研究药物吸收的实验方法。缺点:不能从细胞或分子水平上研究药物的吸收机制;生物样本中的药物分析方法干扰较多,较难建立;由于试验个体间的差异,导致试验结果差异较大;整体动物或人体研究所需药量较大,周期较长。2. 在体肠灌流法:本法能避免胃内容物和消化道固有生理活动对结果的影响。3. 离体肠外翻法:该法可根据需要研究不同肠段的药物吸收或分泌特性及其影响因素。4. Caco-2细胞模型法Caco-2细胞的结构和生化作用都类似于人小肠上皮细胞,并且含有与刷状缘

3、上皮细胞相关的酶系。优点:Caco-2细胞易于培养且生命力强,细胞培养条件相对容易控制,能够简便、快速地获得大量有价值的信息;Caco-2细胞来源是人结肠癌细胞,同源性好,可测定药物的细胞摄取及跨细胞膜转运;存在于正常小肠上皮中的各种转运体、代谢酶等在Caco-2细胞中大都也有相同的表达,因此更接近药物在人体内吸收的实际环境,可用于测定药物在细胞内的代谢和转运机制;可同时研究药物对粘膜的毒性;试验结果的重现性比在体法好。缺点:酶和转运蛋白的表达不完整,此外来源,培养代数,培养时间对结果有影响;缺乏粘液层,需要时可与HT-29细胞共同培养。四、药物血浆蛋白结合率常用测定方法的原理及注意事项。1.

4、 平衡透析法原理:利用与血浆蛋白结合的药物不能通过半透膜这一原理,将蛋白置于一个隔室内,用半透膜将它与另外一个隔室隔开,游离药物可以自由从半透膜自由透过,而与血浆蛋白结合的药物却不能自由透过半透膜,待平衡后,半透膜两侧隔室的游离药物浓度相等。注意事项:道南效应:由于蛋白质和药物均带电荷,膜两侧药物浓度即使在透析达到平衡后也不会相等。采用高浓度的缓冲液或加中性盐溶液可以最大限度地降低这种效应。药物在半透膜上有无保留:药物与膜的吸附影响因素较多,结合程度取决于药物的特点及膜的化学特性,当结合程度很高时,就会对结果影响较大。可设立一个对照组,考察药物与半透膜的吸附程度,如果吸附严重,就应该考虑换膜或

5、者采用其他研究方法。空白干扰:有时从透析膜上溶解下来的一些成分会影响药物的测定,如用紫外或荧光法,因此在实验之前应该对膜进行预处理,尽可能去除空白干扰。膜完整性检验:透析结束后,要检查透析外液中是否有蛋白溢出,即检查半透膜的稳定性,如有蛋白溢出,需换膜重复实验。实验通常需要较长时间才能达到平衡,故最好是在低温环境下进行,以防蛋白质被破坏。2. 超过滤法原理:通过药物、药物血浆蛋白结合物的分子量的差异而将两者分开。与平衡透析法不同的是在血浆蛋白室一侧施加压力或超离心力,使游离药物能够快速地透过半透膜而进入另一个隔室,而结合型药物仍然保留在半透膜上的隔室内。注意事项:不同型号的滤过膜对结合率测定结

6、果的影响。不同的超滤时间对结合率的影响。不同压力下超滤对结合率的影响。评价:优点是快速,只要有足够的滤液分析即可停止实验,可用于不稳定的药物血浆蛋白结合率的测定。五、列举多种多药耐药蛋白表达的部位、底物及抑制剂。(P-GP为重点)多药耐药性现象最早在肿瘤细胞中发现。对药物敏感的肿瘤细胞长期用一种抗肿瘤药物处理后,该细胞对药物敏感性降低,产生耐药性,同时对其他结构类型的抗肿瘤药物敏感性也降低。1. P-糖蛋白(P-GP)表达部位:在人中,P-GP主要表达于一些特殊组织如肠、肾、肝、脑血管内皮、睾丸和胎盘等,成为血脑屏障、血-睾屏障和胎盘屏障的一部分。P-GP将毒物从细胞排出胞外,保护相应组织,免

7、受毒物的危害。底物:钙拮抗剂:维拉帕米抗癌药:长春新碱、紫杉醇;HIV蛋白酶抑制剂:印地那韦类固醇类:地塞米松、氢化可的松免疫抑制剂:环孢素A抗生素类:红霉素其它如吗啡、地高辛。由于底物的广泛性,表现出对多种药物的交叉耐药性。抑制剂:许多物质可以抑制P-GP转运底物。多数抑制剂如维拉帕米、环孢素A等本身也是P-GP 底物,属于竞争性抑制剂。但也有些抑制剂是P-GP不良底物或不是P-GP底物。 2. 多药耐药相关蛋白 (MRP)有MRP1、MRP2、MRP3、MRP4和MRP5。最早是在产生多药耐药的肺肿瘤细胞中发现的,是多种肿瘤细胞耐药的原因之一。在正常组织中也有MRP1的表达,在肺和睾丸中表

8、达量相对较高。MRP1是两性有机阴离子转运载体,也转运脂溶性药物或化合物,多数底物是葡萄糖醛酸结合或硫酸结合物。 3. 乳腺癌耐药蛋白(BCRP)第三章 药物的代谢研究药物的生物转化:即药物的代谢,是药物从体内消除的主要方式之一。药物进入体内后部分药物在体内各种代谢酶的作用下进行生物转化,再以原型和代谢物的形式随粪便和尿液排出体外。一、药物在体内的生物转化主要有两个步骤相代谢反应:药物在相反应中被氧化、还原或水解。相代谢酶有细胞色素P450酶、环氧化物水合酶、水解酶、黄素单加氧酶、醇和醛脱氢酶。相代谢反应:药物在相代谢反应中与一些内源性的物质(如葡萄糖醛酸、甘氨酸、硫酸等)结合或经甲基化、乙酰

9、化排出体外。催化相代谢反应的酶有葡萄糖醛酸转移酶、谷胱甘肽转移酶、硫酸转移酶、乙酰转移酶、甲基转移酶。二、药物经生物转化后的活性变化1. 代谢物活性或毒性降低;2. 形成活性代谢物;3. 形成毒性代谢物;4. 前药的代谢激活:有些药物本身没有药理活性,需要在体内经代谢激活才能发挥作用。三、细胞色素P450酶生物学特性1. P450酶是一个多功能的酶系:可以在催化一种底物的同时产生几种不同的代谢物;2. P450酶对底物的结构特异性不强:可代谢各种类型化学结构的底物;3. P450酶存在明显的种属、性别和年龄的差异;4. P450酶具有多型性,是一个超级大家族:5. P450酶具有多态性:即同一

10、属的不同个体间某一P450酶的活性存在较大差异,可将个体按代谢速度快慢分为强代谢型EMs和弱代谢型PMs。其中CYP2D6和CYP2C19呈现出典型的多态性。6. P450酶具有可诱导和可抑制性。苯巴比妥可诱导,特非那定可抑制。四、人肝微粒体中参与药物代谢的P450酶类型:CYP1A、CYP2C、CYP2D、CYP2E、CYP3ACYP450的特征反应:CYP1A2:非那西丁;CYP2C8:紫杉醇;CYP2C9:双氯芬酸五、影响药物代谢的因素1. 代谢相互作用:参与药物代谢的P450酶的一个重要的特性就是可以被诱导或抑制;2. 种属差异性:不同种属的P450同工酶的组成是不同的,因此同一种药物

11、在不同种属的动物和人体的代谢途径和代谢产物可能是不同的;3. 年龄和性别的差异:药物代谢的年龄差异主要在儿童和老年人中表现,这是因为机体的许多生理机能(如肝、肾功能等)与年龄有关;药物代谢存在一定的性别差异,但这一差异没有年龄差异那么显著,且其在人体内的代谢差异没有动物显著;4. 遗传变异性:是造成药物的体内过程出现个体差异的主要原因之一;5. 病理状态:肝脏是药物的主要代谢器官,因此当肝功能严重不足时,必然会对主要经肝脏代谢转化的药物的代谢产生非常显著的影响。第四章 经典的房室模型理论一房室:指药物在体内迅速达到平衡,即药物在全身各组织部位的转运率是相同或者相似的,此时把整个机体视为一个房室

12、,称为一房室模型。二房室:将机体分为两个房室,即中央室和外周室。外周室:把血流不太丰富,药物转运速度较慢且难于灌注的组织(如脂肪,静止状态的肌肉等)归并成一个房室,称为外周室。这些组织中的药物与血液中的药物需要经过一段时间才能达到平衡。中央室:由一些血流比较丰富,膜通透性较好,药物易于灌注的组织(如心肝肾肺等)组成,药物往往首先进入这类组织,血液中药物可以迅速与这些组织中的药物达到平衡一、药动学参数的生理及临床意义1. 药峰时间tmax和药峰浓度cmax药物经血管外给药后出现的血药浓度最大值的时间和此时的浓度。用于制剂吸收速率的质量评价。药物吸收快,则峰浓度高,达峰时间短。2. 表观分布容积V

13、d是指药物在体内达到动态平衡时,体内药量与血药浓度相互关系的一个比例常数,其本身不代表真实的容积,主要反映药物在体内分布广窄的程度。对于单室模型,有Vd=X/c。药物的分布容积大小取决于其脂溶性、膜通透性、组织分配系数及与血浆蛋白等生物物质结合率等因素。根据药物的分布容积可粗略地推测其在体内的大致分布情况。如一个药物Vd的为3-5L左右,则该药物可能主要分布与血液并与血浆蛋白大量结合,如双香豆素和苯妥英钠;如一个药物的Vd为10-20L左右,则说明该药物主要分布于血浆和细胞外液,这类药物不易通过细胞膜,因而无法进入细胞内液,如溴化物和碘化物;如一个药物的分布容积为40L,则这个药物可以分布于血

14、浆和细胞内液、细胞外液,表明其在体内分布较广,如安替比林;有些药物的Vd非常大,可以达到100L以上,这一体积远远超过体液总容积,在体内往往有特异性的组织分布,如硫喷妥钠具有较高的脂溶性,可大量分布于脂肪组织。3. 消除半衰期:血药浓度下降一半所需的时间。按一级消除的药物则有t1/2=0.693/k4. 血药浓度-时间曲线下面积AUC是评价药物吸收程度的重要指标。5. 生物利用度F 参见第七章6. 清除率CL =kVd 是指在单位时间内,从体内消除的药物的表观分布容积数。反应药物体内消除的参数。二、一房室静注及一房室静脉滴注给药参数及计算。一房室静注:c=c0e-kt lgc=lgc0-(k/

15、2.303)t t1/2=0.693/k V=X0/c0 CL=kV AUC=c0/k=X0/kV动力学特征:血药浓度以恒定的速率随时间递减;消除半衰期与初浓度c0无关;AUC与给药剂量x0成正比。一房室静脉滴注:是药物以恒速静脉滴注给药的一种方式,血浓C随时间的增加而增加,直到达到稳态Css。dX/dt=K0-KX (K0为滴注速率,X为体内药量,K为一级消除速率常数)动力学特征:血浓随时间递增,当t时,e-kt0,血液浓度达到稳态,Css=K0/kV 稳态水平的高低取决于滴注速率, Css和k0成正比。到达稳态所需时间取决于药物的消除半衰期,而与k0无关,当t=3.32 t1/2时,c=0

16、.9Css,当t=6.64 t1/2时,c=0.99Css,即经过6.64 t1/2时即可达到坪水平的99%。期望稳态水平确定后,滴注速率即可确定:k0=CssVk三、一房室静注多次给药多剂量给药:按一定的剂量、一定的给药间隔经多次重复给药后才能使血药浓度保持在一定的有效浓度范围内,从而达到预期疗效。临床上为达到期望的疗效常常采用多剂量给药以维持有效的血浓,按一级过程处置的药物连续多次给药后,血浓呈现有规律的波动。随着给药次数的增加,血药浓度不断递增,但递增的速度逐渐减慢,直至达到稳态水平,此时若继续给药则血药浓度在稳态水平上下波动。稳态“坪”浓度:参见第六章 稳态水平分数fss,即药物达到稳

17、态水平的某一分数,计算公式如下:fss=cnc=1-e-nk= e-nk=1-fss = -nk=2.303lg(1-fss) 。当fss=90%时,nt=3.32t1/2,表示经3.32 t1/2可达到90%稳态水平;当fss=99%时,n=6.64t1/2,表示经6.64 t1/2可达到99%稳态水平。上述的关系式表明:达到稳态某一百分比所需的时间和药物半衰期成正比,而与给药次数和给药间隔无关。负荷剂量:凡首次剂量即可使血药浓度达到稳态的剂量称为负荷剂量。X0*=X0/(1-e-K),若t=t1/2,则负荷剂量=2X0,即如按半衰期给药,则需首剂量加倍。积累系数R:经重复多次给药后,药物在

18、体内有蓄积的现象,其累计程度定义为稳态平均血药浓度与第一次给药的平均血药浓度之比。第五章 非线性药物动力学线性药代动力学:目前临床使用的药物中,绝大多数药物在体内的转运和消除速率常数呈现为剂量或浓度非依赖性,表现为血药浓度或血药浓度曲线下面积与剂量呈正比。 非线性药代动力学:临床上某些药物存在非线性的吸收或分布(如抗坏血酸);还有一些药物以非线性的方式从体内消除,过去发现有水杨酸、苯妥英钠和乙醇等。这主要是由于酶促转化时药物代谢酶具有可饱和性,肾小管主动转运时所需的载体也具有可饱和性,所以药物在体内的转运和消除速率常数呈现为浓度依赖性,此时药物的消除呈现非一级过程,一些药动学参数如药物半衰期、

19、清除率等不再为常数,AUC、Cmax等也不再与剂量成正比关系。非线性药动学特征:高浓度时为零级过程;低浓度时为近似的一级过程;消除速率和半衰期不再为常数,而与初浓度c0有关;AUC与剂量不成比例。鉴别方法:lgc-t图形观察法:药物静注后,作lgc-t图,若呈明显的上凸曲线可考虑为非线性动力学,若为直线或下凹曲线则可初步判断为线性动力学。面积法:对同一受试者给予不同的剂量,分别计算AUC值,若AUC与X0呈比例,说明为线性,否则为非线性。若AUC随剂量增加较快,可考虑为非线性消除;若AUC随剂量增加较慢,血管外给药的情况下可考虑为吸收出现饱和,即非线性吸收。近年来非线性药物动力学的研究进展:最

20、近发现了一些非线性消除的药物,如抗胃酸药奥美拉唑;其他因素引起的药物非线性消除现象,如在作用机制上注意到药物本身以外的因素如赋形剂或者主要代谢产物对肝药酶的抑制作用而导致的非线性药动学现象;新技术在非线性药动学研究中的应用,如采用稳定同位素标记等;药物的非线性结合研究:除了吸收和代谢外,近年发现蛋白结合也可引起的非线性代谢。第六章 非房室模型的统计矩方法一、非房室模型统计矩方法的定义和内容。非房室模型的统计矩方法以概率论和数理统计学中的统计矩方法为理论基础,对数据进行解析,包括零阶矩、一阶矩和二阶矩,体现平均值、标准差等概念,反映了随机变量的数字特征。在药动学中,零阶矩为AUC,和给药剂量成正

21、比,是一个反映量的函数;一阶矩为MRT,反映药物分子在体内的平均停留时间,是反映速度的函数;二阶矩为VRT,反映药物分子在体内的平均停留时间的差异大小。二、非房室模型和房室模型的优缺点比较。非房室模型优点:限制性假设较少,只要求药时曲线的尾端符合指数消除,这一点易被实验证实;解决了不能用相同房室模型拟合全部实验数据的问题。例如,有的实验对象其数据符合一房室模型,另有部分对象数据符合二房室模型,很难比较各参数。而用非房室模型分析,不管指数项有多少,都可以比较各组参数,如AUC、MRT、Cl等。缺点:不能提供药时曲线的细节,只能提供总体参数。房室模型理论:将整个机体视为一个系统, 将药物转运速率相

22、近的组织归类为一个房室,机体是由若干个房室组成的一个完整的系统,称之为房室模型。优点:能提供血药浓度时间曲线的细节及局部参数;缺点:经典的房室模型是依据药物在其中的转运速度的差异而划分的,所谓的房室并不代表任何的生理和解剖上的组织器官,因此房室模型具有相对性抽象性主观随意性等缺陷,只适合于描述在体内属于线性动力学特征的药物在使用房室模型时应注意其前提假设。三、相关参数的计算1. 各阶统计矩AUC:零阶矩,血药浓度-时间曲线下面积,是反映吸收程度的量,和给药剂量成正比;AUC0-=(ci+Ci+1)(ti-ti-1)/2+ct*/kMRT:一阶矩,反映药物分子在体内的平均停留时间,称为平均驻留时

23、间;MRT=AUMC/AUC AUMC=0t*tctdt + t*c*/k + c*/k2对于线性药物动力学过程,符合指数函数衰减,其停留时间遵从“对数正态分布”。理论上,正态分布的积累曲线,平均值在样本总体的50%处;对数正态分布的累计曲线的平均值则在63.2%处。静注后MRT就表示消除给药量63.2%所需要的时间,但是如果存在吸收项,MRT大于消除给药量63.2%所需要的时间。MRT和半衰期的的关系:MRT为所有分子在体内停留的平均时间,全局参数;半衰期为药物消除一办所需的时间,为局部参数。一般情况下,t1/2MRT对于二房室以上的模型,末端相的t1/2的增加可以大于MRT的增加,所以有可

24、能MRTt1-均成立;90%置信区间在规定的80%-125%之间。2. cmax等效性评价双单侧t检验:t1、t2t1-均成立;90%置信区间在规定的70%-143%之间。3. tmax等效性评价:用Wilcoxon方法得到SS。第八章 临床药物动力学一、何谓临床药物动力学?其研究目的是什么?定义:临床药物动力学是药物动力学原理在临床治疗中的应用,具体的讲是利用血药浓度监测数据对个体病人给药剂量进行调整,使临床用药更加安全有效。这一工作有时也称为治疗药物监测(TDM)。研究目的:某种药物的药动学参数是在正常人体或一般病人得到的,但在临床上由于每个病人的生理、病理情况有所不同,对药物在体内的AD

25、ME会产生一定影响。所以有可能药品说明书上推荐的剂量对一部分人是适用的,但对一部分人来说,由于吸收或代谢等方面的原因,血药浓度达不到有效的浓度;而对于另一部分病人来说,由于药物在体内消除较慢,血药浓度超过中毒浓度而出现毒副反应。二、哪些类型的药物需要进行血药浓度检测?通常适用于治疗指数较窄的药物。某些药物的毒性较小,最小中毒浓度远高于有效浓度,在临床上应用时通常采用较大的剂量,不需考虑毒性问题。而对一些毒性较大的药物,且影响其吸收或消除的因素较多的情况下,则必须进行血药浓度监测和剂量调整。三、影响血药浓度变化的因素有哪些?药物:化学结构、理化性质、剂型因素等决定了药物的吸收速度和吸收程度,也决

26、定了其在体内的分布和消除特征;患者:患者的种族、性别、年龄、身高、体重及病理因素、遗传因素、营养状况等。四、试从药物吸收、分布、代谢、排泄的角度分析老年人对药物代谢能力的变化。吸收:胃液分泌机能下降,胃内pH上升,消化道的运动性能降低,肠粘膜上皮细胞有减少趋势;全身血液循环速度的减慢,消化道的血流量随之下降。分布:人血浆蛋白的浓度值呈下降趋势,药物血浆蛋白结合率下降,游离药物所占比例增大,药物向组织分布的程度也会随之增加,使药物的分布容积增大。这种作用对本身血浆蛋白结合率比较高的药物的影响会比较明显;体内脂肪所占比例也会上升。对油-水分配系数较小的药物,分布容积会下降,而脂溶性药物的分布容积会

27、有所增加;年龄增加使大多数药物消除速度变慢,老年人的体重呈减少趋势,使单位体重的投药量增加,在加上人体内水分所占比例也随年龄增加而下降,所以大多数药物在老年人组织中的浓度是增加的。代谢: P450酶的活性逐渐下降,使机体对药物的代谢能力降低,药物在体内的半衰期延长。年龄增加对不同种类的肝P450酶活性的影响有所不同;年龄增加可能会导致药物脱氢酶活性增加,结合酶活性降低。排泄:年龄增加会引起肾血流量的减少,导致肾小球滤过率降低,从而使肾消除减慢,药物在机体的半衰期延长;肾小管对药物分泌能力下降;血浆蛋白结合率随年龄增加而下降,游离性药物浓度增加会引起药物肾小球滤过量增加,从而产生排泄加快的影响。

28、五、肝、肾疾患对药物代谢分别会产生哪些影响?肝功能不全:肝药酶活性会有所降低,使药物代谢速度变慢,这与肝脏受损的程度有很大关系;肝功能不全时血浆蛋白的浓度降低,会导致游离药物浓度的增加,此外肝病有时会引起胆管闭塞症,对药物的胆排泄会产生影响。肾功能不全时:大多数水溶性药物可经肾脏直接排出体外,肾功不全使这类药物的半衰期延长。一些脂溶性药物在肝脏经I相代谢后水溶性增加,再通过肾脏排泄,由于某些代谢产物仍具有活性作用,肾功能不全时这样的代谢物就会在体内蓄积,并可能导致毒副作用。肾病病人的血浆蛋白浓度通常会有所降低,这对血浆蛋白结合率高的药物的体内过程会有较大影响,由于游离药物所占比例增加,会促进药

29、物的代谢、排泄,并使药物在体内的分布容积增大。六、群体药物动力学是将药物动力学理论与统计模型结合起来而提出的一种药动学理论。群体药物动力学可以将病人的个体特征与药物动力学参数联系起来,并作为病人临床个体化给药的依据。群体药代动力学参数是在群体药物动力学的研究中,所算出的一些基本的药动学参数的平均值。七、试述肾衰病人给药剂量调整的方法肌酐是肌肉在正常的能量代谢过程中所产生的一种代谢产物,它在体内的清除过程主要在肾脏进行,近曲小管和远曲小管基本不对它吸收和分泌,所以肌酐的清除率等于肾小球滤过率,其数值与药物的肾消除速率常数成正比。k=aCLcr+knr 肌酐清除率的计算:CLcr=体重(114-年

30、龄)71Ccr (ccr为肌酐的血清浓度)1. 速率常数比较法:计算出病人消除速率k后,可与正常人相比得出要调整的剂量。(X0)病人=k病人k正常(X0)正常2. Ritschel一点法病人给予一受试剂量X(试验)后,经时间t取血分别测定血药浓度c*和肌酐浓度ccr。根据病人的肌酐浓度求出肌酐清除率,再进一步计算出病人的消除速率常数k。根据k计算该试验剂量下的稳态最小血药浓度cminss(试验)。根据希望的稳态最小血药浓度cminss(希望)计算出要调整的剂量X(调)。X(调)=cminss(希望)cminss(试验)X(试验)八、试述新药I期临床研究中人体药物动力学试验的设计要点。 应由有经

31、验的临床药理研究人员和有经验的医师根据临床前研究结果进行设计和试验。1. 受试者:以正常成年人进行试验,试验前和试验后进行体格检查,受试者最好男女相等;例数一般为10-30例。2. 受试剂量的确定:从小剂量到大剂量进行。参考动物的试验剂量如ED50、LD50、慢毒剂量和药代动力学参数共同讨论预测剂量,然后以这个预测剂量的分数剂量(1/10预测剂量)作为人体试验的初试剂量,试验前还必须确定试验的最大剂量,一般等于临床应用该类药物的最大剂量。根据药物的安全范围大小,根据需要,从起始剂量到最大剂量间分成几个剂量级别,若达到最大剂量仍未出现毒性反应即可终止试验。如在剂量递增过程中出现了某种不良反应,虽

32、未达到规定的最大剂量,也应终止。同一受试者只能接受一个剂量试验,不得参加剂量递增和累积试验。3. 给药途径:按临床推荐的给药途径。根据新药的药物动力学、药效学性质和用药目的选择给药途径,无论选择何种给药途径,均须准备好抢救措施。4. 取血时间:包括药物的吸收相、分布相、消除相等,可参考动物的药物动力学试验结果,也可根据预实验数据进行设计。5. 血药浓度测定:血药浓度测定方法的建立和考核标准同生物利用度实验。6. 数据处理:药物的消除动力学性质,即属于线性还是非线性动力学,一般以药物的消除特征及AUC与剂量的关系进行判断;模型判别,即判断药物体内过程属于何种房室模型;药物的消除途径,可通过尿药排

33、泄量得出尿排泄分数和肾清除率、肝清除率;主要药物动力学参数,包括t1/2、cmax、tmax、Ka、K、V等。第九章 药代动力学与药效动力学结合模型药代-药效结合模型:是通过将传统的药动学和药效学模型有机结合而成,用于揭示药效学和药动学之间内在联系的模型。一、药物在体内所产生作用的特点大多数药物在体内所产生的作用是直接和可逆的,这种作用类型的主要特点:1. 一旦药物到达作用部位即可产生相应的药理效应;2. 一旦药物从作用部位消除,其所产生的相应的药理效应也随之消失;3. 药物的作用强度与作用部位的药量存在一定的量效关系。此外,所选择的效应指标还应具有可连续定量测定、对浓度相对敏感和可重复性等特

34、点。二、血药浓度-效应曲线的类型及含义1. 血药浓度-效应的S形曲线形状与体外的量效曲线的形状基本一致,给药后每一时间点上的浓度和效应都是严格的一一对应关系,这表明效应药量的变化平行于血药浓度的变化。2. 血药浓度-效应的逆时针滞后曲线某些药物的血药浓度-效应的曲线呈现明显的逆时针滞后环。给药后每一时间点上的浓度和效应不是严格的一一对应关系,效应的峰值明显滞后于血药浓度峰值,这表明效应室不在血液室,因而出现效应滞后与血药浓度的现象。3. 血药浓度-效应的顺时针曲线某些药物的血药浓度-效应的曲线呈现明显的顺时针环,给药后每一时间点上的浓度和效应也不是严格的一一对应关系,与血药浓度上升期相比,下降

35、期内同样的血药浓度所对应的效应明显减弱,这表明药物在体内可能出现了快速耐受性。三、药效学模型的类型及表述方程,药效学参数的意义1. 线性模型如药物的效应与浓度之间呈直线关系,则可用线性模型来描述两者之间的关系,其表达式为E=Sc+E0 E为效应强度;S为直线斜率;E0为给药前的基础效应。该模型能预报给药前的基础效应,但不能预报药物最大效应。2. 对数线性模型是线性模型的另一种形式,其特征为药物效应强度与对数浓度或对数效应强度与对数浓度之间呈直线关系: E=Slgc+I 或者lgE=Slgc+I。其中I为无生理意义的一种经验的常数,该模型能够预报最大效应的20%-80%之间的药物效应强度,但不能

36、预报药物的基础效应和最大效应。3. Emax模型:E=EmaxCEC50+C 该模型可预报最大效应。适用于药物效应随浓度呈抛物线递增。4. Hill模型E=EmaxCsEC50s+Cs 式中s为影响曲线斜率的一种陡度参数,当s=1时,简化为Emax模型;当s小于1时,曲线较为平坦;当s大于1时,曲线变陡,且更趋向S形,同时最大效应增大。四、PK-PD模型中效应室的含义Sheiner在血药浓度与效应之间的关系时首次提出应在原PK模型中增设一个效应室,即把效应室看成一个独立的房室,而不是归属在哪一个房室中,效应室与中央室按一级过程相连。五、药效学参数Keo的意义为药物从效应室中的消除速率常数,单位为时间的倒数。用以反映药物从效应室中消除的速率。表示当Keo时,无明显的滞后现象;当Keo时,在消除相时药物从效应室中的消除与在血浆中的消除相平行;Keo 时,药物在效应室中的滞留时间长于其在血浆中的滞留时间。六、PK-PD的角度分析药物效应的变化滞后于血药浓度变化可能的原因 药物须由血液运送至作用部位方能发挥作用,血药浓度与作用部位的药物浓度之间存在一个平衡过程。即1. 药物从中央室到效应室;2. 药物是间接作用的;3. 药物作用来源于活性代谢产物。七、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论