




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、平方关系:_;,第2讲,同角三角函数的基本关系式与诱导公式,1同角三角函数关系式,商数关系:_.,2函数名不变的诱导公式 (1)sin()_;cos()_;tan()_. (2)sin()_;cos()_;tan()_. (3)sin()_;cos()_;tan()_.,sin 2cos2 1,sin,cos,tan,sin,cos,tan,sin,cos,tan,sin,cos,sin,cos,C,C,sin xcos x,tan x1,解析:sinx3cosxtanx3,sinxcosx,sinxcosx 2 2,tanx 2,3 91,3 . 10,考点 1,诱导公式的应用,诱导公式使用
2、时的两大问题:如何确定函数 名改变和函数名不改变;如何确定符号,【互动探究】,sin2cos,考点 2,同角关系的应用,(1)求,的值; 2sincos,(2)求 sin和 cos的值; (3)求 cos2sin2的值,解题思路:关于 cos,sin的一次或二次齐次方程都可以先 解出 tan的值,已知 tan的值,可以求关于 sin、cos的二次 齐次式的值,或求分子分母都是关于 sin、cos齐次式的值,(2)ab,2sincos0,tan.,【互动探究】,2已知向量 a(2,1),b(sin,cos) (1)若 ab,求 tan的值; (2)若 ab,求 tan的值,解:(1)ab,2cossin,tan2.,1 2,错源:审题不清,忽视隐含条件,(1)判断角是第几象限的角; (2)求 tan的值,误解分析:本题易忽视隐含条件:sin0,cos0,并且,【互动探究】,A,例 4:设 f(x)2sinxcosx. (1)若 x0是函数 f(x)的一个零点,求 cos2x0 的值; (2)若 x0 是函数 f(x)的一个极值点,求 sin2x0 的值,解题思路:函数 f(x)的极值点可也是导函数的零点,三角函数的轴对称问题、最值问题都可以考虑 用导数解决,【互动探究】,1注意公式的变形使用,弦切互化、三角代换、消元是三 角变换的重要方法,要尽量减少开方运算,慎重确定符号,3应用诱
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 胶带转载机操作工班组考核测试考核试卷含答案
- 2024年中卫市检察系统考试真题
- 2025年煤矿回采工艺试题及答案
- 现代物流产业园项目社会稳定风险评估报告
- 社交礼仪知识关键要点试题及答案
- 2025年水利水电工程安全生产基础知识试题及答案
- 20万千瓦风电工程社会稳定风险评估报告
- 2025财会类专技岗考试真题及答案
- 2025病理学考试真题及答案
- 2025殡仪协会考试真题及答案
- 铁路信号基础继电器详解
- 外墙真石漆工程安全文明施工保证措施及环境保护体系和保证措施
- 等离子点火系统及暖风器系统培训
- 2024年金华市中心医院医疗集团(医学中心)招聘笔试真题
- 新课标体育与健康教案集(水平四)
- 混凝土结构设计原理(第五版)课后习题答案
- 中国非遗文化鱼灯介绍介绍2
- 金华市金东区合同制教师管理办法
- 5.申恒梅-环境空气自动监测数据审核、评价及异常数据判定
- 智能安防系统维护与保养手册
- 接收预备党员表决票(样式)
评论
0/150
提交评论